奇函数的变限积分为偶函数 奇函数的积分是偶函数
更新时间:2021-10-03 16:34:30 • 作者: •阅读 3405
奇函数的变限积分函数是偶函数吗?
奇函数的原函数一定全都是偶函数偶函数的原函数只有一个是奇函数,那就是从0到x的变上限积分.
高等数学问题 证明奇函数的变上限积分函数是偶函数把他拆成两个积分 a到0 0到x a到0上是一个常数 0到x是一个偶函数 偶函数加常数仍然是偶函数 其实积分变换可以证明 只是你的过程有问题
为什么奇函数的积分一定是偶函数.求证明方法,同样为什么偶函数的积.函数F(x)=f(x)+g(x)的定义域为D,当x∈D时,-x∈D.∵f(x)在区间D上是奇函数,函数y=g(x)在区间D上是奇函数,∴对任意x∈D有 f(-x)=-f(x),g(-x)=-g(x)成立,∴G(-x)=f-(x).g(-x)=[-f(x)].[-g(x)]=f(x).g(x)=G(x) 即对任意x∈D有 G(-x)=G(x)成立.故G(x)为偶函数.所以两个奇函数的积是偶函数.
变上限积分的奇偶性怎么判断和一般函数的奇偶性一样 看f(x) 和f(-x)是否相等或相反.最好有例子好说明
关于变上限积分的奇偶性问题求解前面就有啊,偶函数的导数是奇函数,积分是求导的逆过程,所以偶函数的积分是奇函数,就是这样的
奇函数积分是偶函数吗?偶函数积分是奇函数吗?奇函数积分是偶函数,偶函数积分不一定是奇函数,因为还有个积分常数在后面
奇函数的原函数一定是偶函数解:f(-x)=-f(x) F(x)=∫f(x)dx+C F(-x)=∫f(x)dx+C(令u=-x) =∫f(-u)d(-u)+C =-∫f(-u)du+C =-∫[-f(u)]du+C =∫f(u)du+C =∫f(x)dx+C=F(x) 所以奇函数的原函数(如果存在的话)是偶函数.
奇函数和偶函数的积分是怎样定义的?奇偶函数在定积分运算中的有关定理和结论:定积分定义:
若f(x)是连续的奇函数是证明定积分f(x)dx(上限是x,下限是0)为偶函数.令t=-x,分别带入两个定积分,再根据奇偶函数性质可得证明
一个函数等于一个变上限积分,怎么判断函数奇偶性???例如,下图.谢谢弄清楚偶函数的定义,f(x)=f(-x), 你看f(-x)=积分0到(-x)^2 =积分积分0到(x)^2 =f(x),所以是偶函数.