1. 首页 > 科技

余弦函数cosx的这些帕德逼近近似式怎么证明? 常用十个泰勒展开公式

余弦函数cosx的这些帕德逼近近似式怎么证明?常用十个泰勒展开公式

数学cosx的泰勒展开是什么?

cosx用泰勒公式展开式如下图所示。

数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。

若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:

其中,f(n)(x)表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。

扩展资料:

实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。泰勒公式的余项可以用于估算这种近似的误差。

泰勒展开式的重要性体现在以下三个方面:

1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。

3、泰勒级数可以用来近似计算函数的值。

三角函数近似方法

四舍五入,一般情况下在数学中是不进行求大约值的,若要求基本上不采用去尾法,除非是实际应用不存在小数时方用去尾法

三角函数的积化和差公式是什么,怎么推导出来的。

baike.baidu/view/383748.htm?fr=ala0_1正弦、余弦的和差化积

指高中数学三角函数部分的一组恒等式

sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]

sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]

cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]

cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]

以上四组公式可以由积化和差公式推导得到

证明过程

sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程

因为

sin(α+β)=sin αcos β+cos αsin β,

sin(α-β)=sin αcos β-cos αsin β,

将以上两式的左右两边分别相加,得

sin(α+β)+sin(α-β)=2sin αcos β,

设 α+β=θ,α-β=φ

那么

α=(θ+φ)/2, β=(θ-φ)/2

把α,β的值代入,即得

sin θ+sin φ=2sin(θ+φ)/2 cos(θ-φ)/2

[编辑本段]正切的和差化积

tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)

cotα±cotβ=sin(β±α)/(sinα·sinβ)

tanα+cotβ=cos(α-β)/(cosα·sinβ)

tanα-cotβ=-cos(α+β)/(cosα·sinβ)

证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ

=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)

=sin(α±β)/(cosα·cosβ)=右边

∴等式成立

证明近似公式

微分用于近似计算中有公式如下:

f(x)近似于f(0)+f′(0)x,其中|x|较小。

在上式中令f(x)=tanx即可证出。.