a,b,c是三角形三边长,b+c=2a,a不等于b,三角形ABC是什么三角形?
- 设a、b、c是三角形ABC的三条边,且a的平方-bc=—a(b-c),则三角形ABC是什么三角形?
- 已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________.
- 已知三角形ABC的三边长为a,b,c,且a\b+a\c=(b+c)\(b+c-a),则三角形ABC是什么三角形
- 已知三角形ABC的内角A,B,C所对的边分别为a,b,c,若B=2A,a=1,b=根号3,则c=?
设a、b、c是三角形ABC的三条边,且a的平方-bc=—a(b-c),则三角形ABC是什么三角形?
a^2-bc+a(b-c)=0
(a-c)(a+b)=0
因为
a+b不等于0
所以
a-c=0
a=c
等腰三角形
已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________.
答案:2c
根据三角形的三边关系,得a-b+c>0,a-b-c<0,所以原式=a-b+c-(a-b-c)=2c。
三角形的三边关系:
1、三角形任意两边之和大于第三边,任意两边之差小于第三边。
2、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
3、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
4、直角三角形斜边的中线等于斜边的一半。
5、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
6、三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
扩展资料:
三角形的其他性质:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6、三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
7、 等底同高的三角形面积相等。
8、3 底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
9、三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
已知三角形ABC的三边长为a,b,c,且a\b+a\c=(b+c)\(b+c-a),则三角形ABC是什么三角形
通分.AC/CB+AB/BC=(B+C)\(B+C-A)
AC+AB/BC=(B+C)\(B+C-A)
A(B+C)(B+C-A)=BC(B+C)
A(B+C-A)=BC
AB+AC-A^2-BC=0
A(B-A)+C(A-B)=0
(A-C)(B-A)=0
其中A-C 或B-A =0
故是等腰
这好象是19届希望杯一试题
已知三角形ABC的内角A,B,C所对的边分别为a,b,c,若B=2A,a=1,b=根号3,则c=?
由正弦定理得:
SinB:SinA=b:a=√3
B=2A
SinB:SinA=Sin2A :SinA=2SinACosA:SinA=2CosB=√3
CosA=√3/2
A=30°,B=60°,C=180°-B-A=90° ,故三角形ABC 为直角三角形
c=2a=2