拉格朗日中值定理 拉格朗日定理公式
定义 又称拉氏定理. 如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a) 令f(x)为y,所以该公式可写成△y=f'(x+θ△x)*△x (0<θ<1) 上式给出.
拉格朗日中值定理拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系.拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)
拉格朗日中值定理的内容?拉格朗日中值定理的内容:若函数f(x)在区间[a,b]满足以下条件: (1)在[a,b]连续 (2)在(a,b)可导 则在(a,b)中至少存在一点f'(c)=[f(b)-f(a)]/(b-a) a<c.
什么是拉格朗日中值定理?通俗点讲,就是有一个函数f(x),有两点,横坐标分别为a,b.a,b之间有一点ξ,f(x)在(a,b)内可微,拉格朗日中值定理即f(b)-f(a)=f(x)在ξ点的导数*(b-a).
拉格朗日中值定理是什么?定义 如果函数f(x)在[a,b]上处处可导,则必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a) f(x)为y. 因此本定理也叫有限增量定理 定理内容 若函数f(x)在区间[a,b]满足以下条件: (1).
拉格朗日中值定理 到底该怎么理解?先说罗尔定理,罗尔定理的,意义很简单,就是两个相同高度的点,一个在左边,一个在右边,从左边的点走到右边的点有无数条路径,其中一条特殊的是两点之间线段最短的走法,罗尔定理的意义就是在这无数条路中,无论哪一条,走到某一个位置的时候方向必然与上面那条特殊走法的方向相同,这是必然的嘛,无论怎么走,当然大方向不能变.比如大方向朝东,你先向东北,再向东南走到目的地,在从东北转向东南的时候转向正东.或者一直往正东走.无论怎么走某一个时刻都是往正东的,这就是所谓的罗尔定理.而拉格朗日中值定理就是将两个点的连线倾斜了一点而已.从函数角度来说,在一段连续的曲线上,必存在一个点,它的切线的斜率等于整段曲线的斜率(首尾两点相连的线,即割线的斜率)
拉格朗日中值定理的条件“在(a,b)开区间可导”不能推知a点右导数和b点左导数存在.详见导数定义.
拉格朗日中值定理 “中值”指的是什么?指的是区间(a,b)的两个端点所连直线的斜率,这个定理就是说如果在闭区间上连续,开区间上可导,那么总有那么一个值能够使已知曲线的斜率和直线斜率相等,其他的斜率都会比这个大或者小.事实上如果你看过罗尔定理,那么你就会更理解这个中值的意义了,在那个定理中,中值指的是斜率为0.
拉格朗中值定理.拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系.拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开).法国数学家拉格朗日于1778年在其着作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理.
拉格朗日中值定理的应用lagrange中值定理的应用实在是太多太多了……比如洛比塔法则,taylor展开都可以看作是它的应用.举个具体例子:f在[a,b]连续, (a,b)可导, f'(x)恒等于m, 证明f在[a,b]为一次函数.最直接又严谨的证法就是用中值定理:取定c属于(a,b), 任意x属于(a,b), f(x)-f(c)=f'(t)(x-c)=m(x-c), 即f为一次函数.