高中数学:数列求和问题 数列求和的七种方法
求高中数学数列求和方法总结
数列求和方法
1. 公式法:
等差数列求和公式:Sn=n(a1+an)/2=na1+n(n-1)d/2
等比数列求和公式:Sn=na1(q=1)
Sn=a1(1-qn)/(1-q)=(a1-an×q)/(1-q) (q≠1)
2.错位相减法
适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式
{ an }、{ bn }分别是等差数列和等比数列. Sn=a1b1+a2b2+a3b3+...+anbn
例如:
an=a1+(n-1)d
bn=a1•q(n-1)
Cn=anbn
Tn=a1b1+a2b2+a3b3+a4b4....+anbn
qTn= a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)
Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)
Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn)
=a1b1-an•b1•qn+d•b2[1-q(n-1)]/(1-q)
Tn=上述式子/(1-q)
3.倒序相加法
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)
Sn =a1+ a2+ a3+...... +an
Sn =an+ a(n-1)+a(n-3)...... +a1
上下相加 得到2Sn 即 Sn= (a1+an)n/2
4.分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
例如:an=2n+n-1
5.裂项法
适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。
常用公式:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5) n•n!=(n+1)!-n!
[例] 求数列an=1/n(n+1) 的前n项和.
解:an=1/n(n+1)=1/n-1/(n+1) (裂项)
则
Sn
=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)
= 1-1/(n+1)
= n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
注意: 余下的项具有如下的特点
1余下的项前后的位置前后是对称的。
2余下的项前后的正负性是相反的。
6.数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
例:
求证:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5
证明:
当n=1时,有:
1×2×3×4 + 2×3×4×5 = 2×3×4×5×(1/5 +1) = 2×3×4×5×6/5
假设命题在n=k时成立,于是:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5
则当n=k+1时有:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4)
= 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)
= [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4)
= (k+1)(k+2)(k+3)(k+4)*(k/5 +1)
= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5
即n=k+1时原等式仍然成立,归纳得证
7.通项化归
先将通项公式进行化简,再进行求和。
如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。
8.并项求和:
例:1-2+3-4+5-6+……+(2n-1)-2n
方法一:(并项)
求出奇数项和偶数项的和,再相减。
方法二:
(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]
高中数学必修5数列求和方法及典型例题+解析 【要全一点】
一.公式法
如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式。注意等比数列公示q的取值要分q=1和q≠1.
二.倒序相加法
如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.
三.错位相减法
如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.
四.裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.
五.分组求和法
若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.
六.并项求和法
一个数列的前n项和中,若可两两结合求解,则称之为并项求和法. 形如 类型,可采用两项合并求解.
高中数学等差数列求和、列项求和的方法或例题演示
一、 等差数列
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列的通项公式为:
an=a1+(n-1)d (1)
前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
二、你说的是不是这个裂项求和?
裂项法是重要的求和方法,不仅渗透了化归的重要思想,而且也是高考的热点问题.
建议你看福建高中新课程这个网站:
gz.fjedu.gov/shuxue/ShowArticle.asp?ArticleID=16066
高一数学数列求和问题
zhidao.baidu/question/114109918.html?si=1
这里有详解
懂了采纳下哈 谢谢