如图,证明数列是柯西数列? 柯西准则证明数列发散
怎么证明一个数列是柯西数列??
数列{xn}有极限的充要条件是:对任意给定的ε>0,有一正整数N,当m,n>N时,有|xn-xm|<ε成立
将柯西收敛原理推广到函数极限中则有:
函数f(x)在无穷远处有极限的充要条件是:对任意给定的ε>0,有Z属于实数,当x,y>Z时,有|f(x)-f(y)|<ε成立
此外柯西收敛原理还可推广到广义积分是否收敛,数项级数是否收敛的判别中,有较大的适用范围。
证明举例:
证明:xn=1-1/2+1/3-1/4+......+ [(-1)^(n+1)]/n 有极限
证:对于任意的m,n属于正整数,m>n
|xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |
当m-n为奇数时 |xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |
<1/n(n+1)+1/(n+1)(n+2)+......+1/(m-1)m
=(1/n-1/m)→0
由柯西收敛原理得{xn}收敛
当m-n为偶数时 |xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |
<1/n(n+1)+1/(n+1)(n+2)+......+1/(m-2)(m-1)-1/m
=(1/n-1/(m-1)-1/m)→0
由柯西收敛原理得{xn}收敛
综上{xn}收敛,即{xn}存在极限
求证一数列是柯西数列
解:∵数列{x[n]},x[n+1]=1+1/(X[n]+1)
∴采用不动点法,设:y=1+1/(y+1),即:y^2=2
解得不动点是:y=±√2
∴(x[n+1]-√2)/(x[n+1]+√2)
={(x[n]+2)/(x[n]+1)-√2}/{(x[n]+2)/(x[n]+1)+√2}
={(x[n]+2)-√2(x[n]+1)}/{(x[n]+2)+√2(x[n]+1)}
={(1-√2)x[n]-(√2-2)}/{(1+√2)x[n]+(√2+2)}
={(1-√2)(x[n]-√2)}/{(1+√2)(x[n]+√2)}
={(1-√2)/(1+√2)}{(x[n]-√2)/(x[n]+√2)}
=(2√2-3){(x[n]-√2)/(x[n]+√2)}
∵x[1]=1
∴(x[1]-√2)/(x[1]+√2)=2√2-3
∴{(x[n]-√2)/(x[n]+√2)}是首项和公比均为2√2-3的等差数列
即:(x[n]-√2)/(x[n]+√2)=(2√2-3)(2√2-3)^(n-1)=(2√2-3)^n
x[n]-√2=x[n](2√2-3)^n+√2(2√2-3)^n
x[n][1-(2√2-3)^n]=√2[1+(2√2-3)^n]
∴{x[n]}的通项公式:x[n]=√2[1+(2√2-3)^n]/[1-(2√2-3)^n]
∵2√2-3=√8-√9
∴-1<2√2-3<0
∵当n趋于无穷大时,(2√2-3)^n趋于0
∴当n趋于无穷大时,x[n]趋于√2
这样根据极限的定义,有:对任意给定的ε>0,存在正整数N,当n,m>N时,有|x[n]-x[m]|<ε
这就完全符合柯西数列的定义
∴{x[n]}是一个柯西数列
【其实柯西收敛准则就指出:数列{x[n]}收敛的必要且充分条件是:{x[n]}是柯西数列。】
怎么证明一个数列是Cauchy列
一般来说证明一个数列是收敛的才用到证明它是柯西列,也就是没有别的方法证了才用这种方法,当然会不太好用。如何证明一个数列是柯西列,最简单的应该是证明这个数列收敛吧……一般情况下,数列的敛散性很容易证明的。难证明的情况只有具体情况具体分析了
如何证明cauchy数列是有界数列
由实数定理可知柯西数列收敛
因为收敛数列必有界
显然可得柯西数列有界