1. 首页 > 科技

数据挖掘选择数据的重要性体现在哪些方面? 数据挖掘的重要性

数据挖掘选择数据的重要性体现在哪些方面?数据挖掘的重要性

数据挖掘的重要性是什么?

数据挖掘就像眼睛和大脑,可以通过分析数据获得洞察力。就像大海上的指南针,指明方向。

数据挖掘的重要性是什么?

人们把原始数据看作是形成知识的源泉,就像从矿石中采矿一样。原始数据可以是结构化的,如关系数据库中的数据,也可以是半结构化的,如文本、图形、图像数据,甚至是分布在网络上的异构型数据。发现知识的方法可以是数学的,也可以是非数学的;可以是演绎的,也可以是归纳的。发现的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以用于数据自身的维护。因此,数据挖掘是一门很广义的交叉学科,它汇聚了不同领域的研究者,尤其是数据库、人工智能、数理统计、可视化、并行计算等方面的学者和工程技术人员。

电子商务中数据挖掘及分析的重要性有哪些

数据挖掘是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其它模型化处理,从中提取辅助商业决策的关键性数据.利用功能强大的数据挖掘技术,可以使企业把数据转化为有用的信息以帮助决策,从而在市场竞争中获得优势地位。

数据分析和数据挖掘的深入学习为什么重要

1、大数据(big data):

指无法在可承受的时间范围内用常规工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产;

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)Veracity(真实性) 。

2、数据分析:

是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。

3、数据挖掘(英语:Data mining):

又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。