1. 首页 > 科技

求基本求导公式详细过程 不定积分24个基本公式

求基本求导公式详细过程不定积分24个基本公式

导数的全套公式

函数导数公式

这里将列举几个基本的函数的导数以及它们的推导过程:

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=arcsinx y'=1/√1-x^2

10.y=arccosx y'=-1/√1-x^2

11.y=arctanx y'=1/1+x^2

12.y=arccotx y'=-1/1+x^2

在推导的过程中有这几个常见的公式需要用到:

1.y=f[g(x)],y'=f'[g(x)]&8226;g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』

2.y=u/v,y'=(u'v-uv')/v^2

3.y=f(x)的反函数是x=g(y),则有y'=1/x'

证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。

3.y=a^x,

⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)

⊿y/⊿x=a^x(a^⊿x-1)/⊿x

如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。

所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β

显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。

可以知道,当a=e时有y=e^x y'=e^x。

4.y=logax

⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x

⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有

lim⊿x→0⊿y/⊿x=logae/x。

可以知道,当a=e时有y=lnx y'=1/x。

这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,

所以y'=e^nlnx&8226;(nlnx)'=x^n&8226;n/x=nx^(n-1)。

5.y=sinx

⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)

⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)

所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)&8226;lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx

6.类似地,可以导出y=cosx y'=-sinx。

7.y=tanx=sinx/cosx

y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x

8.y=cotx=cosx/sinx

y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x

9.y=arcsinx

x=siny

x'=cosy

y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2

10.y=arccosx

x=cosy

x'=-siny

y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2

11.y=arctanx

x=tany

x'=1/cos^2y

y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2

12.y=arccotx

x=coty

x'=-1/sin^2y

y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2

另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与

4.y=u土v,y'=u'土v'

5.y=uv,y=u'v+uv'

均能较快捷地求得结果。

函数求导公式及方法

四、基本求导法则与导数公式

1. 基本初等函数的导数公式和求导法则

基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下:

基本初等函数求导公式 (1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

(11) (12) ,

(13) (14)

(15) (16)

函数的和、差、积、商的求导法则

设 , 都可导,则

(1) (2) ( 是常数)

(3) (4)

反函数求导法则

若函数 在某区间 内可导、单调且 ,则它的反函数 在对应区间 内也可导,且

复合函数求导法则

设 ,而 且 及 都可导,则复合函数 的导数为

上述表中所列公式与法则是求导运算的依据,请读者熟记.

如果有邮箱发课件给你!

导数的计算 求详细过程

由题意,得

lim(x->0)x/f(x)=1

f'(0)=lim(x->0)【f(x)-0】/(x-0)

=lim(x->0)【f(x)-f(0)】/(x-0)

=f'(0)

=1/[lim(x->0)x/f(x)]

=1/1

=1

f'(0)=1

基本函数求导公式

基本公式如下:

计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。

只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。

扩展资料:

导数的求导法则

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

参考资料:导数-搜狗百科