1. 首页 > 游戏

初中几何证明? 初中几何证明定理

初中几何证明?初中几何证明定理

初中几何证明有哪些方法?

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

初中数学几何证明题技巧

几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。

一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。

下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。

一、证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二、证明两个角相等

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

三、证明两条直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

10.在圆中平分弦(或弧)的直径垂直于弦。

11.利用半圆上的圆周角是直角。

四、证明两直线平行

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

五、证明线段的和差倍分

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

六、证明 角的和差倍分

1.与证明线段的和、差、倍、分思路相同。

2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

初中所有数学几何证明的条件

同角(或等角)的余角相等。

对顶角相等。

三角形的一个外角等于和它不相邻的两个内角之和。

在同一平面内垂直于同一条直线的两条直线是平行线。

同位角相等,两直线平行。

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。

直角三角形中,斜边上的中线等于斜边的一半。

在角平分线上的点到这个角的两边距离相等。及其逆定理。

夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。

一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。

有三个角是直角的四边形、对角线相等的平行四边形是矩形。

菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。

正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。

在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。

垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。

相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。

圆内接四边形的对角互补,并且任何一个外角等于它的内对角。

切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。

切线的性质定理①经过圆心垂直于切线的直线必经过切点。 ②圆的切线垂直于经过切点的半径。 ③经过切点垂直于切线的直线必经过圆心。

切线长定理 从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。

弦切角定理 弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。

相交弦定理 ; 切割线定理 ; 割线定理

初中数学几何证明知识点。

初中数学公理和定理

一、公理(不需证明)

1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

2、两条平行线被第三条直线所截,同位角相等;

3、两边和夹角对应相等的两个三角形全等; (SAS) 4、角及其夹边对应相等的两个三角形全等; (ASA)

5、三边对应相等的两个三角形全等; (SSS)

6、全等三角形的对应边相等,对应角相等.

7、线段公理:两点之间,线段最短。

8、直线公理:过两点有且只有一条直线。

9、平行公理:过直线外一点有且只有一条直线与已知直线平行

10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直

以下对初中阶段所学的公理、定理进行分类:

一、直线与角

1、两点之间,线段最短。 2、经过两点有一条直线,并且只有一条直线。

3、同角或等角的补角相等,同角或等角的余角相等。 4、对顶角相等

二、平行与垂直

5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

6、经过已知直线外一点,有且只有一条直线与已知直线平行。

7、连接直线外一点与直线上各点的所有线段中,垂线段最短。

8、夹在两平行线间的平行线段相等

9、平行线的判定:

(1)同位角相等,两直线平行;

(2)内错角相等,两直线平行;

(3)同旁内角互补,两直线平行;

(4)垂直于同一条直线的两条的直线互相平行.

(5)如果两条直线都和第三条直线平行,那么这两条直线也平行

10、平行线的性质:

(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)

11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.

12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.

13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.

14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.

15、轴对称的性质:

(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.

(2)对应线段相等、对应角相等。

16、平移:经过平移,图形上的每个点都沿着相同方向移动了相同的距离,平移后,新图形和原图形的形状和大小都没有发现改变,即它们是全等图形。即对应线段平行且 相等,对应角相等,对应点所连的线段平行且相等

17、旋转对称:

(1)图形中每一点都绕着旋转中心旋转了同样大小的角度

(2)对应点到旋转中心的距离相等; (3)对应线段相等、对应角相等

18、中心对称:

(1)具有旋转对称的所有性质:

(2)中心对称图形上的每一对对应点所连成的线段都被对称中心平分

四、三角形:

(一)一般性质

19、三角形内角和定理:三角形的内角和等于180°

20、三角形外角的性质:

①三角形的一个外角等于与它不相邻的两个内角的和;

②三角形的一个外角大于任何一个与它不相邻的内角; ③三角形的外角和等于360°

21、三边关系:

(1)两边之和大于第三边;

(2)两边之差小于第三边

22、三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半.

23、三角形的三边的垂直平分线交于一点(外心), 这点到三个顶点的距离(外接圆半径)相等。

24、三角形的三条角平分线交于一点(内心),这点到三边的距离(内切圆半径)相等。

(二)特殊性质:

25、等腰三角形、等边三角形

(1)等腰三角形的两个底角相等.(简写成“等边对等角”)

(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)

(3)“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

(4)等边三角形的三个内角都相等,并且每一个内角都等于60°.

(5)三个角都相等的三角形是等边三角形。

(6)有一个角是60°的等腰三角形是等边三角形

26、直角三角形:

(1)直角三角形的两个锐角互余;

(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;

(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.

(4)直角三角形斜边上的中线等于斜边的一半.

(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

(6)三角形一边的中线等于这边的一半,这个三角形是直角三角形。

五、四边形

27、多边形中的有关公理、定理:

(1)四边形的内角和为360°

(2)N边形的内角和:( n-2)×180°.

(3)任意多边形的外角和都为360°

28、平行四边形的性质:

(1)平行四边形的对边平行且相等;

(2)平行四边形的对角相等;

(3)平行四边形的对角线互相平分。

29、平行四边形的判定:

(1)两组对边分别平行的四边形是平行四边形;

(2)一组对边平行且相等的四边形是平行四边形; (3)两组对边分别相等的四边形是平行四边形;

(4)两组对角分别相等的四边形是平行四边形; (5)对角线互相平分的四边形是平行四边形.

30、矩形的性质:

(1)具有平行四边形的所有性质

(2)矩形的四个角都是直角;

(3)矩形的对角线相等且互相平分.

31、矩形的判定:

(1)有一个角是直角的平行四边形是矩形。

(2)有三个角是直角的四边形是矩形.

(3)对角线相等的平行四边形是矩形。

32、菱形的性质:

(1)具有平行四边形的所有性质

(2)菱形的四条边都相等;

(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.

33、菱形的判定:

(1)四条边相等的四边形是菱形.

(2)一组邻边相等的平行四边形是菱形。

(3)对角线互相垂直的平行四边形是菱形。

34、正方形的性质:

(1)具有矩形、菱形的所有性质

(2)正方形的四个角都是直角;

(3)正方形的四条边都相等;

(4)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角.

35、正方形的判定:(证明既是矩形又是菱形)

(1)有一个角是直角的菱形是正方形;

(2)有一组邻边相等的矩形是正方形.

(3)对角线相等的菱形是正方形

(4)对角线互相垂直的矩形是正方形

36、等腰梯形的判定:

(1)同一条底边上的两个内角相等的梯形是等腰梯形; (2)两条对角线相等的梯形是等腰梯形.

37、等腰梯形的性质:

(1)等腰梯形的同一条底边上的两个内角相等;

(2)等腰梯形的两条对角线相等.

38、梯形的中位线平行于梯形的两底边,并且等于两底和的一半.

四、相似形与全等形

39、全等多边形的对应边、对应角分别相等.

40、全等三角形的判定:

(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(SSS.).

(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.(SAS.)

(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(ASA).

(4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(AAS.)

(5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.(H.L.)

41、相似三角形的性质:对应边、周长、对应线段的比均等于相似比,面积比等于相似比的平方

42、相似三角形的判定:(类似于全等判定)

(1)平行于三角形的一边的直线和其他两边相交所构成的三角形与原三角形相似。

(2)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似;

(3)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;

(4)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.

43、相似多边形的性质:同相似三角形

44、相似多边形的判定:对应边成比例且对应角相等

五、圆

45、(1)圆是轴对称图形,任何一条直径所在直线都是它的对称轴。 (2)圆是中心对称图形,对称中心是圆心。

46、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

47、垂径定理推论: 如果一条直线具有过圆心(直径)、垂直弦、平分弦、平分弦所对的劣弧(优弧)中知二得二。

48、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

49、同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.

50、圆周角定理 一条弧所对的圆周角等于它所对的圆心角的一半

(1)半圆或直径所对的圆周角都相等,都等于90°(直角); (2)90°的圆周角所对的弦是圆的直径.

(3)在同圆或等圆中,同弧或等弧所对的圆周角相等,圆周角相等则所对的弧相等;

51、不在同一条直线上的三个点确定一个圆.

52、切线的判定(1)经过半径的外端且垂直于这条半径的直线是圆的切线.

53、切线的性质(2)圆的切线垂直于过切点的直径。

附:扩展部分:

1、从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角

2、射影定理:

直角三角形斜边上高分成的两直角三角形与原三角形相似,并且有以下关系:

(1)AC2=AD·AB (2)BC2=BD·AB (3)CD2=AD·BD

3、(1)如图(1)有:AE·BE=CE·DE

(2)如图(2),AB是直径,CD⊥AB ,则:CD2=AD·BD