m∈[-1,1],求m(1-m^2)的最大值(lim(m→∞)(1-1/m^2)^m 求极限)
更新时间:2021-08-11 18:17:02 • 作者:RODERICK •阅读 8801
- lim(m→∞)(1-1/m^2)^m 求极限
- 求当m取何值时,1/2-(m-2)^2的值最大,最大值是多少?
- 已知M-1/M=-1,求M^2+M的值,2M^2+2M+1的值
- m-1/m=3,求m²-1/m²的值
lim(m→∞)(1-1/m^2)^m 求极限
公式: lim(1+1/x)^x=e
lim(1-1/m^2)^m =lim[(1+1/m)(1-1/m)]^m
=lim[(1+1/m)^m][lim(1-1/m)^(-m)]^(-1)
=e.e^(-1)
=1
求当m取何值时,1/2-(m-2)^2的值最大,最大值是多少?
当m=0时最大,最大值为1/2
已知M-1/M=-1,求M^2+M的值,2M^2+2M+1的值
M-1/M=-1
两边乘M
M^2-1=-M
M^2+M=1
2M^2+M+1
=2(M^2+M)+1
=2*1+1
=3
m-1/m=3,求m²-1/m²的值
m-1/m=3,平方
(m-1/m)^2=9
m^2-2+1/m^2=9
m^2+1/m^2=11
m^2+2+1/m^2=13
(m+1/m)^2=13
m+1/m=±√13
m^2-1/m^2
=(m+1/m)(m-1/m)
=±√13*3
=±3√13