1. 首页 > 游戏

m∈[-1,1],求m(1-m^2)的最大值(lim(m→∞)(1-1/m^2)^m 求极限)

m∈[-1,1],求m(1-m^2)的最大值(lim(m→∞)(1-1/m^2)^m   求极限)

lim(m→∞)(1-1/m^2)^m 求极限

公式: lim(1+1/x)^x=e

lim(1-1/m^2)^m =lim[(1+1/m)(1-1/m)]^m

=lim[(1+1/m)^m][lim(1-1/m)^(-m)]^(-1)

=e.e^(-1)

=1

求当m取何值时,1/2-(m-2)^2的值最大,最大值是多少?

当m=0时最大,最大值为1/2

已知M-1/M=-1,求M^2+M的值,2M^2+2M+1的值

M-1/M=-1

两边乘M

M^2-1=-M

M^2+M=1

2M^2+M+1

=2(M^2+M)+1

=2*1+1

=3

m-1/m=3,求m²-1/m²的值

m-1/m=3,平方

(m-1/m)^2=9

m^2-2+1/m^2=9

m^2+1/m^2=11

m^2+2+1/m^2=13

(m+1/m)^2=13

m+1/m=±√13

m^2-1/m^2

=(m+1/m)(m-1/m)

=±√13*3

=±3√13