1. 首页 > 游戏

高数,求极限,题目和解析如下图所示,请问怎么从第一步到第二步的,第三步到第4步又是为什么,求详解

就等于n的平方+1

高数,求极限,题目和解析如下图所示,请问怎么从第一步到第二步的,第三步到第4步又是为什么,求详解

解:(1)当x<0时,lim(n->∞)[e^(nx)]=0 f(x)=(1+x+x^2*0)/(1+0)=1+x (2)当x=0时,f(x)=(1+0+0)/(1+1)=1/2 (3)当x>0时,f(x)=lim(n->∞){[x^3*e^(nx)]/[x*e^(nx)]} (∞/∞型极限,应用罗比达法则) =lim(n->∞)(x^2) =x^2.

1、利用函数连续性:lim f(x) = f(a) x->a (就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)2、恒等变形 当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零.第二:若分母出现根号,可以配一个因子使根号去除.第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方.(通常会用到这个定理:无穷大的倒数为无穷小) 当然还会有其他的变形方式,需要通过练习来熟练.3、通过已知极限 特别是两个重要极限需要牢记.

a=ln3