某头条号和微头条发布的领域内容不一样,影不影响? 微头条和文章哪个收益高
今日头条号认证领域和发布的文章视频完全不符有什么影响?
您好,这样操作会影响到你的指数,如果还没有过新手,那就有些难,过原创更是如此。
当然,如果只是发了几篇,未垂直,也不用担心,只要后面坚持垂直发,会好的。
任何平台都喜欢垂直发的作者,对于推荐和自己的收益会更好的。加油
今日头条发布文章和微头条哪个关注度更高有什么区别
微头条就是短文,不适合发布头条文章很多文字的内容,微头条也就好比空间的说说,头条就好比空间的日志。
关注度高,要看内容是否优质,大家是否爱看。
今日头条发文章和发微头条的区别在哪
今日头条发文章需要先注册头条号的账号,而发微头条不用注册,只要你有今日头条的账号就可以。两者的具体区别如下:
1、微头条所创作的内容人人都可发布,主要是发布短内容,鼓励和他人互动讨论,发表自己的看法,类似于朋友圈,没有收益,但是用户可以通过微头条发布短内容、与人互动,从而建立关系、获得粉丝。
2、头条号的内容创作需要专业、有深度的内容,可以通过头条号发布的内容可以收获一定的收益,根据文章内的广告浏览数量来计算收益。
扩展资料:
微头条的帐号与头条号目前已相互打通,为创作者提供与粉丝高频互动交流的平台,让头条号文章触达粉丝的机率更高。在人工智能推荐的基础上,增加了社交分发的机制。
微头条的发布方法:
1、在手机版今日头条内,点击下方有一个“+”号就可以发布内容;安卓系统用户需要点击右上角“相机”按钮进行发布内容;
2、电脑版则需要进入今日头条号后台,点击网页左边的“微头条”编辑内容并发布。
参考资料:
搜狗百科-微头条
在线等!一道大学数学题!急!!高手来!!
基本假设和符号规定:
基本假设:
1.投资数额M相当大,为了便于计算,假设M=1;
2.投资越分散,总的风险越大:
3.总的风险用投资项目Si中最大的一个风险来衡量;
4.n种资产Si之间是相互独立的;
5.在投资的这一时期内,ri,pi,qi,r0为定值,不受意外因素的影响;
符号规定:
Si-第i种投资项目,如股票,债券
ri,pi,qi-分别为Si的平均收益率,风险损失率,交易费率
ui-Si的交易定额
ro-同期银行利率
xi-投资项目Si的资金
a-投资风险度
Q-总体收益
*Q-总体收益的增量
问题分析与模型建立
1.总体风险用所投资的Si中最大的一个风险来衡量,既是max{qixi|i=1,2..n}
2.购买Si所付交易费是一个分段函数,既是
交易费=pixi,xi>ui piui,xi<=ui
而题目所给的定值ui(单位:元)相对总投资M很小,piui更小,可以忽略不计,这样购买Si的净收入为(ri-pi)xi.
3.要使净收益尽可能大,总体风险尽可能小,这是一个多目标规划模型:
目标函数max∑(i=0,-n) (ri-pi)xi min{max{qixi}}
约束条件∑(i=0,-n)(1+pi)xi=M xi>=0,i=0,1...n
4模型简化:
a,在实际投资中,投资者承受风险的程度不一样,若给定风险一个界限a,使最大的一个风险qixi/M<=a,可找得到相应的投资方案,这样把多目标规划变成一个目标的线性规划。
模型1】
固定风险水平,优化收益
目标函数:Q=max∑(i=1,-n+1) (ri-pi)xi
约束条件:qixi/m<=a
∑(i=0,-n) (1+pi)xi=M,xi>=0,i=0,1.....n
b.若投资者希望总盈利至少达到水平k以上,在风险最小的情况下寻找相应的投资组合。
模型2】
固定盈利水平,极小化风险
目标函数:R=min{max{qixi}}
约束条件:∑(i=0,-n) (ri-pi)xi>=k,
∑(i=0,-n) (1+pi)xi=M,xi>=0,i=0,1...n
c.投资者在权衡资产风险和预期收益两方面时,希望选择一个令自己满意的投资组合,因此对风险,收益赋予权重S(0<S<=1),S称为投资偏好系数。
模型3】
目标函数:minS{max{qixi}}-(1-S)∑(i=0,-n) (ri-pi)xi
约束条件:∑(i=0,-n) (1+pi)xi=M,xi>=0,i=0,1...n
模型1的求解:
对表中给定的数据,模型1为:
min f=(-0.05,-0.27,-0.19,-0.185,-0.0185)(x0,x1,x2,x3,x4)^T
st.
{x0+1.01x1+1.02x2+1.045x3+1.065x4=1
0.025x1<=a
0.015x2<=a
0.055x3<=a,
0.026x4<=a
xi>=0,(i=0,1,/4)
由于a是任意给定的风险度,到底怎样给定没有一个准则,不同的投资者有不同的风险度。我们从a=0开始,以步长*a=0.001进行循环搜索,编制程序xxgh5.m如下:
a=0;
while (1.1-a)>1
c=[-0.05 -0.27 -0.19 -0.185 -0.185];
Aeq=[1 1.01 1.02 1.045 1.065];
beq=[1];
A=[0 0.025 0 0 0;0 0 0.015 0 0;0 0 0 0.055 0;0 0 0 0
0.026];
b=[a;a;a;a];
vlb=[0.0.0.0.0];
vub=[];
[x,val]=linprog(c,A,b,Aeq,beq,vlb,vub);
a
x=x'
Q=-val
plot(a,Q,'.')
axis([0 0.1 0 0.5])
hold on
a=a+0.001;
end
xlabel('a'),ylabel('Q')
结果分析
1.风险大,收益大。
2.当投资越分散时,投资者承受的风险越小,这与题意一致,既是,冒险的投资者会出现集中投资的情况,保守的投资者会分散投资。
3.在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长很快;在这一点右边,风险增加很大时,利润增长很缓慢,所以对于风险和收益没有特殊偏好的投资者来说,应该选择曲线的拐点作为最优投资组合,大约是a*=0.6%,Q*=20%,所对应投资方案为:
风险度 收益 x0 x1 x2 x3 x4
0.0060 0.2019 0 0.2400 0.4000 0.1091 0.2212