1. 首页 > 其他

三角函数诱导公式 三角函数所有诱导公式

三角函数6个诱导公式的推导

常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二.

三角函数诱导公式 三角函数所有诱导公式

数学三角函数所有诱导公式(共九个)

诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(pi/2-a)=cos(a) cos(pi/2-a)=sin(a) sin(pi/2+a)=cos(a) cos(pi/2+a)=-sin(a) sin(pi-a)=sin(a) cos(pi-a)=-cos(a) sin(pi+a)=-sin(a) cos(pi+a)=-cos(a) tgA=tanA=sinA/cosA

三角函数诱导公式及推导过程

1、sin(-a)=-sina sin(-a)=sin(0-a)=sin0cosa-sinacos0=0-sina=-sina2、cos(-a)=cosa cos(-a)=cos(0-a)=cos0cosa+sin0sina=cosa+0=cosa3、sin(π/2-a)=cosa sin(π/2-a)=sinπ/2cosa-sinacosπ/2=cosa-0=cosa4、cos(π/2-a)=sina5、sin(π/2+a)=cosa6、cos(π/2+a)=-sina7、sin(π-a)=sina8、cos(π-a)=-cosa9、sin(π+a)=-sina10、cos(π+a)=-cosa4~10的推导过程和3一样

三角函数诱导公式有那几个?

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三.

三角函数 诱导公式

常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二.

三角函数诱导公式是?

太多了 只好复制过来了 常用的诱导公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ.

求三角函数的所有诱导公式

常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二.

数学三角函数诱导公式

三角函数诱导公式 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2.

三角函数诱导公式的推导

这是记忆三角函数诱导公式的口诀.例如计算:sin240;tan240 sin240=sin(180+60)=-sin60; sin240=sin(270-30)=-cos30. 以上的180度是90度的偶数(2)倍,结果仍然是原来的函数(正弦), 而270度是90度的奇数(3)倍,结果就变成了原函数的余函数(余弦), 因为原来的角240度是第三项限的角,原函数的符号是负的. “奇变偶不变”是说,角前面的度数是90度的倍数.如果是偶数,则函数名称不变,如果是奇数,则要变成它的余函数(正、余弦互相变,正、余切互相变,正、余割互相变) “符号看象限”是说,要服从原来的角所在的象限中原来函数的符号.

三角函数诱导公式

我大四了,记得不多了 对诱导公式,用奇变偶不变(不管是sin、cos、tan后的度数都写成[k/2]π+ω,看k的值,如果是奇数则变符号,sin就变成cos,cos就变成sin..),符.