f(0)=-0cos0怎么计算? x4f0swt tw
- cos0=等于几?
- 三角函数的计算公式怎么算
- 已知f(x)连续,f(0)=0, lim(x趋于0) f(x)/1-cosx=2,则在x=0处,函数f(x)=0,则(A:不可导 B:可导且f(x)=0
- cos0等于多少
cos0=等于几?
cos0=1
余弦:角的邻边比斜边 ,记作 (由余弦英文cosine简写 ),即角的邻边/斜边(直角三角形)。记作cos A =x/r。
余弦定理:三角形任一边的平方等于其他两边平方和减去这两边与它们夹角的余弦的积的两倍。
同角三角函数的基本关系式
倒数关系:tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1;
商的关系: sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;
和的关系:sin2α+cos2α=1、1+tan2α=sec2α、1+cot2α=csc2α;
平方关系:sin²α+cos²α=1。
扩展资料:
正弦定理:它指出“在任意一个平面三角形中,各边和它所对角的正弦值得比相等且等于外接圆的直径”e68a84e8a2ad62616964757a686964616f31333431373331,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为直径)。
正切定理:在三角形中,任意两条边的和除以第一条边减第二条边的差所得的商,等于这两条边对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。
三角函数:是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
参考资料:百度百科-余弦
三角函数的计算公式怎么算
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
它有六种基本函数:
函数名 正弦 余弦 正切 余切 正割 余割
符号 sin cos tan cot sec csc
正弦函数 sin(A)=a/h
余弦函数 cos(A)=b/h
正切函数 tan(A)=a/b
余切函数 cot(A)=b/a
在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)来表示。
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA ?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) ?
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
sin2A=2sinA*cosA
三倍角公式
sin3a=3sina-4(sina)^3
cos3a=4(cosa)^3-3cosa
tan3a=tana*tan(π/3+a)*tan(π/3-a)
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) ?
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)+cos(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
积化和差公式
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(pi/2-a)=cos(a)
cos(pi/2-a)=sin(a)
sin(pi/2+a)=cos(a)
cos(pi/2+a)=-sin(a)
sin(pi-a)=sin(a)
cos(pi-a)=-cos(a)
sin(pi+a)=-sin(a)
cos(pi+a)=-cos(a)
tgA=tanA=sinA/cosA
万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
其它公式
a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]
a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]
1+sin(a)=(sin(a/2)+cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
其他非重点三角函数
csc(a)=1/sin(a)
sec(a)=1/cos(a)
双曲函数
sinh(a)=(e^a-e^(-a))/2
cosh(a)=(e^a+e^(-a))/2
tgh(a)=sinh(a)/cosh(a)
已知f(x)连续,f(0)=0, lim(x趋于0) f(x)/1-cosx=2,则在x=0处,函数f(x)=0,则(A:不可导 B:可导且f(x)=0
x→0,有f(x)→0,1-cosx→0
因此,x→0lim[f(x)/1-cosx]是“0/0”型极限,考虑罗比塔法则,对分子、分母分别求导,再取比的极限
x→0lim[f’(x)/sinx]=2
f’(x)=2sinx
f(x)=-2cosx+C,C是常数,又f(0)=0,C=2
f(x)=2-2cosx①
or
f’(x)=2x(考虑重要极限x→0 lim[x/sinx]=1)
f(x)=x^2+C, 又f(0)=0,C=0
f(x)=x^2②
f(x)= 2-2cosx① or f(x)=x^2②
不妨依次讨论:
显然可导,否定A
可导,f’(x)≠0,否定B
x=0是①和②的极小值点,否定D,选C
正确答案:选C.
欢迎访问我的极限与导数salon
http://hi.baidu/ok%B0%C9/blog/category/%BC%AB%CF%DE%D3%EB%B5%BC%CA%FDsalon
cos0等于多少
cosx=邻边/斜边 x=0时,就是斜边和邻边相等了所以没角度了,
所以cos0=1
sinx=对边/斜边 x=0时,对边就等于零了
所以sin0=0