光谱共焦扫描组件包括什么?(光谱共焦传感器有什么作用?)
光谱共焦传感器有什么作用?
使用光谱共焦测量技术,可以得到超高分辨率。纳米级分辨率源于上述经过特殊处理得到的加长光谱范围。由于采用检测焦点的颜色,得到距离信息,光谱共焦传感器可以采用非常小的测量光斑,从而允许测量非常小的被测物体。这也意味着,即使被测表面有非常轻微的划痕,也逃不过光谱共焦传感器的眼睛。
由于光谱共焦传感器的光路非常紧凑和集中,使其非常适合测量钻孔结构。而其他测量方式,如激光三角反射式测量,对于小孔往往无能为力,因为小孔形成的阴影会遮挡反射光的光路,无法进行测量。针对这种小孔测量任务,德国米铱公司推出了IFS 2402微型光谱共焦传感器探头。这种探头拥有仅4mm的探头直径,可以探入小孔内部进行测量。
另一种非常适合光谱共焦传感器的应用是测量多层透明材料的厚度。与其他测量方法不同,光谱共焦传感器在测量这种物体时,仅需要一支探头就可以完成测量。测量被测物体前端面和后端面的反射光,从而得到层厚信息。由于测量只使用白光,无需额外附加激光安全措施。由于探头本身不含有任何电路,传感器探头还可以被用于有防爆要求的环境或者有电磁干扰要求
的环境。而控制器可以被放置于安全距离以外。允许最长50m的光纤连接探头和控制器。但是,需要禁止在光路上存在遮挡物或小颗粒,这会影响测量精度,甚至使测量变得不可完成。由于采用的是光学测量方法,探头到被测物体的距离也有一定限制。
光谱共焦传感器有什么作用
1、节气门位置传感器
作用:节气门位置传感器是监测节气门开启角度的大小,确定怠速,全负荷及加减速工况,以实施与节气门开度状态
相对应的各种喷油量控制。失效影响:怠速忽高忽低,或造成飞车现象。
2、进气门压力传感器
作用:进气压力传感器是提供发动机负荷信息,即通
遇对进气管的压力测量,间接测量进入发动机的进气量,再通过内部电路使进气量转化成电信号提供给电脑。失效影响:造成发动机不易起动,或怠速不稳。
3、进气温度传感器
作用:提供空气温度信息用于修正喷油量和点火正时。 失效影响:怠速偏低,易熄火。
4、曲轴转角传感器
作用:是提供转速和曲轴相位信息,为喷油正时和点火正时提供参照点。失效影响:发动机不能起动或起动后发动机突然熄火。
5、冷却液温度传感器
作用:是监测发动机冷却液温度,将之转换为电压信号传送到电脑,ECU根据此信号来控制喷油量,点火正时和怠速控制。 失效影响:怠速偏低。
6、氧传感器
作用:是提供混合器浓度信息,用于修正喷油量,实现对空燃比的闭环控制,保证发动机实际的空燃比接近理论空燃比的主要元件。 失效影响:怠速不稳,耗量过大。
7、爆震传感器
作用:是提供爆震信息,用于修正点火正时,实引爆震闭环控制。 失效影响:当爆震将要发生前无法提供爆震信点,电脑接收不到信号“峰值”不能减少点火提前角,而发生爆震。
8、三元催化器
作用:三元催化器装在排气管中的消声器前,可同时降低尾气中三种污染物(一氧化碳CO、未燃碳氧化合物HC和氧化物Nox的含量,发动机的空燃比接近理论空燃比时,三元催化器转化效率最高,当有害气体的300℃~800℃的高温通过三元催化器中心经附在陶瓷单体上的贵重催化发生氧化和还原反应,转化为无害气体。 失效影响:排出的废气不能达标。
共焦球面扫描腔有哪几部分构成
是扫描仪吧,不是扫描腔。共焦球面扫描干涉仪有三个部分:共焦球面谐振腔,锯齿波驱动器和光电接收器。
光谱共焦传感器的原理是什么?
光谱共焦传感器原理
混色光是由众多不同波长光线组成的,我们称之为光谱。所有不同波长的可见光重叠在一起,形成白光。人类肉眼可见光的波长范围从400nm(蓝光)到700nm (红光)。通过透镜,不同颜色的光不会聚焦到同一个点上。这种现象称为色差透镜错误或者叫色差透镜偏差。
众所周知,自然界的日光属白光一种,白光不是最纯洁的光,而是许多单色光组成的。光在不同介质中传播可能会有角度偏差的现象产生,而实际的白光照射下不同介质将有很多单线光的折射。光学材料(透镜)对于不同单色光的折射率是不同的,也就是折射角度不同波长愈短折射率愈大,波长愈长折射率愈小(这也是不同望远镜所谓的色差不同的原因),同一薄透镜对不同单色光,每一种单色光都有不同的焦距,按色光的波长由短到长,它们的像点离开透镜由近到远地排列在光轴上(不同的单色光的波长是不同的)这样成像就产生了所谓色差透镜错误。色差透镜错误使成像产生色斑或晕环。在摄影器材中,应通过特殊处理,尽量消减色差透镜错误导致的成像问题。常用的消除方法有双胶合系统与双分离系统。
一面单透镜的色差造成对不同波长的色光产生了不同的焦距
对于消色差双合透镜而言,可见光的波长近似具有相等的焦距
具有抵消色散属性的衍射光学器件可以用来矫正色差
而光谱共焦测量方法恰恰利用这种物理现象的特点。通过使用特殊透镜,延长不同颜色光的焦点光晕范围,形成特殊放大色差,使其根据不同的被测物体到透镜的距离,会对应一个精确波长的光聚焦到被测物体上。通过测量反射光的波长,就可以得到被测物体到透镜的精确距离。这一过程与摄影器材通过各种方法消减色差的过程正好相反。
为了得到上述特殊的色差,需要在传感器探头内使用若干特殊透镜,用来根据所需量程将光线分解。最后使用一个凸透镜,将传感器探头射出的光线聚拢在一条轴线上,形成所谓的焦点轴线。如果不使用凸透镜,传感器探头射出的光将分散开来,测量也就无法进行了。
白色光通过一个半透镜面到达凸透镜。上述特殊色差就在这里产生。光线照射到被测物体后发生反射,透过凸透镜,返回到传感器探头内的半透镜上。半透镜将反射光折射到一个穿孔盖板上,小孔只允许聚焦最好的反射光通过。
透过穿孔盖板的光是一组模糊光谱,也就是说若干不同波长的光都有可能穿过小孔照在CCD感光矩阵单元上。但是只有在被测物体上聚焦的反射光拥有足够光强,在CCD感光矩阵上产生一个明显的波峰。
在穿孔盖板后面,需要一个分光器测量反射光的颜色信息。分光器类似一个特制光栅,可以根据反射光的波长,增强或减弱折射率。因此,CCD矩阵上的每一个位置,对应一个测量物体到探头的距离。
在整个量程上,共可以得到超过30,000个测量点。
这里只计算光线波长,用以产生测量信号。反射光产生的信号波峰振幅并不在信号测量依据之内。也就是说反射光的光强不会影响测量结果。这意味着,无论有多少反射光从被测物体反射回来,测量的距离结果可能是不变的。因为反射光的光强仅仅取决于反射物体的反光程度。因此,采用德国米铱公司的光谱共焦传感器,即使被测物体是强吸光材料,如黑色橡胶;或者是透明材料,如玻璃或者液体,都可以进行正常可靠的测量。