如图,请问为什么要限制|x|<a?(如图,函数y=x2-2x+m(m为常数)的图象如图,如果x=a时,y<0;那么x=a-2时,函数值( )A.y<0B
- 如图,函数y=x2-2x+m(m为常数)的图象如图,如果x=a时,y<0;那么x=a-2时,函数值( )A.y<0B.0
- ∫(下限为a,上限为b)f(x)=(b-a)∫(下限为0,上限为1)f[a+(b-a)x]dx
- 用matlab以动画的方式绘制出摆线 x=a(t-sint) y=a(1-cost) (a自己赋值)的渐屈线
- x+x分之1是不是分式
如图,函数y=x2-2x+m(m为常数)的图象如图,如果x=a时,y<0;那么x=a-2时,函数值( )A.y<0B.0
x=a代入函数y=x2-2x+m中得:y=a2-2a+m=a(a-2)+m,
∵x=a时,y<0,
∴a(a-2)+m<0,
由图象可知:m>0,
∴a(a-2)<0,
又∵x=a时,y<0,
∴a>0则a-2<0,
由图象可知:x=0时,y=m,
又∵x<1时y随x的增大而减小,
∴x=a-2时,y>m.
故选:D.
∫(下限为a,上限为b)f(x)=(b-a)∫(下限为0,上限为1)f[a+(b-a)x]dx
难道不是直接一个变量代换就搞定了么?
Let x = a + (b-a) y, where 0<=y<=1, so that a<=x<=b.
(b-a)∫(下限为0,上限为1)f[a+(b-a)x]dx
= (b-a)∫(下限为0,上限为1)f[a+(b-a)y]dy
= ∫(下限为0,上限为1)f[a+(b-a)y]d[a+(b-a)y]
= ∫(下限为a,上限为b)f(x)dx --- plug in x = a + (b-a) y
用matlab以动画的方式绘制出摆线 x=a(t-sint) y=a(1-cost) (a自己赋值)的渐屈线
clear;
clc;
close;
a=1;
syms t
x=a*(t-sin(t));
y=a*(1-cos(t));
ezplot(x,y,[0,2*pi]),grid on;hold on;
dy=diff(y)/diff(x);
dyy=diff(dy)/diff(x);
xx=x-(1+dy^2)*dy/dyy;%渐屈线的坐标
yy=y+(1+dy^2)/dyy;
M=50;
t=0;
xxx=subs(xx);
yyy=subs(yy);
H1=plot(xxx,yyy,'r');hold on;grid on;axis([0,7,-2.5,2.5]);
x1=subs(x);
y1=subs(y);
H2=plot([x1,xxx],[y1,yyy],'k--');
H3=plot(x1,y1,'ko');
H4=plot(xxx,yyy,'ro');
tt=linspace(0,2*pi,M);
for i=1:M
pause(0.2);
t=tt(1:i);
xxx=subs(xx);
yyy=subs(yy);
x1=subs(x);
y1=subs(y);
set(H1,'xdata',xxx,'ydata',yyy);
set(H2,'xdata',[x1(i),xxx(i)],'ydata',[y1(i),yyy(i)]);
set(H3,'xdata',x1(i),'ydata',y1(i));
set(H4,'xdata',xxx(i),'ydata',yyy(i));
end
x+x分之1是不是分式
是分式,只不过对x的取值范围有限制