大一高数极限经典例题 大一高数求极限的例题
x→0时,【1】原式=lim{sin(5x)/[0.6(5x)]}=(1/0.6)lim[sin(5x)/(5x)]=5/3.【2】原式=lim[0.5(2x)cos(2x)/sin(2x)]=lim[0.5cos(2x)*lim[2x/sin(2x)]=1/2【3】原式=lim(2sin²x/x²)=2.
大学求极限lim简单例题第一个极限是零,第3个用裂项法.^(1) lim(x→1)(x^2-2x+1)/(x^du2-1)=lim(x→1)(x-1)^2/[(x-1)(x+1)]=lim(x→1)(x-1)/(x+1)=0(2) lim(x→4)(x^2-6x+8)/(x^2-5x+4)=lim(x→4)(x-2)(x-4).
高数极限例题及详解.急急急 在线等大神.解:原式=lim(x->∞)[x(sin(1/x)/(1/x))] ={lim(x->∞)x}*{lim(x->∞)[sin(1/x)/(1/x)]} =0*1 (应用重要极限lim(z->0)(sinz/z)=1) =0.
大一高数,极限计算题?分享一种解法.①先分子分母分别有理化.利用√(1+tanx)+√(1+sinx)、√(1+sin²x)+1是连续函数,x=0时,其值均为2,∴原式=lim(x→0)(tanx-sinx)/(xsin²x)=lim(x→0)secx(1-cosx)/(xsinx)=lim(x→0)(1-cosx)/(xsinx).②应用洛必达法则.原式=lim(x→0)sinx/(sinx+xcosx)=lim(x→0)1/(1+xcosx/sinx)=1/2.供参考.
大一极限数学题x->+∞, 分子分母的幂次相等,极限值 = 分子分母的最高幂次系数之比 原式 = 4^3 * 3^4 / 6^5 = 2/3
高数极限求法及例题解:lim(x->1)[ 1/(1-x) -3/(1-x^3) ]=lim(x->1){ 1/(1-x) -3/[(1-x)(1+x+x^2] }=lim(x->1) [(1+x+x^2)-3 ] /[(1-x)(1+x+x^2)]=lim(x->1) (x^2+x-2) /[(1-x)(1+x+x^2)]=lim(x->1) (x+2)(x-1) /[(1-x)(1+x+x^2)]=lim(x->1) -(x+2) /(1+x+x^2)=-3/3=-1
大一高数,求极限,题目如图这种题目的做法是一样的 a)证明数列单调增(或者减) b)证明数列有上界(或者下界) 归纳法的关键是找到上界或者下界,做的方法是对迭代式两边同时求极限,如1)同时求极限得到x = 1/2 (x+a/x) ,这样求得的x就是极限,往往也是上界2)同时求极限得到x=根号(2x) 得到x=根号2是上界 知道上界以后用归纳法证明xn小于上界,然后再证明其单调增即可 过程很麻烦,lz还是先做做,做到不会的地方再问
简单的求极限的题目( 大一)lim (3+x/6+x)^( x-1/2 ) =lim (1-3/6+x)^( x-1/2 ) 这是1的无穷次方的形式 设U =-3/6+x X=-3/U-6 x-1/2 =-3/(2U)-7/2 题目即求:lim (1+U)^(-3/(2U)-7/2)U趋向于0时的极限 lim (1+U)^(1/U)=e 得=e^(-3/2)*lim (1+U)^(-7/2)=e^(-3/2) 谢谢采纳,^的意思是次方
大一高数函数极限 应用题首先第一个求极限,反应出,方程p(x)=ax^3+bx^2+cx+d,待遇第一个方程,可以确定,a=1, b=2;带入第二个方程,可以确认, c=1, d=0,答案就明细了..