1. 首页 > 科技

命题公式证明? 命题定理证明视频教学

命题公式证明?命题定理证明视频教学

命题、定理、证明是什么意思?

命题

1、能够判断真假的语句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题。

2、“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论。

逻辑联结词

简单的逻辑联结词包括:或、且、非。

(1)或

1、用联结词“或”把p与q联结起来称为一个新命题,记作p∨q,读作“p或q”。

2、命题p∨q的真假的判定:一真必真

p q p∨q

真 真 真

真 假 真

假 真 真

假 假 假

(2)且

1、用联结词“且”把p与q联结起来称为一个新命题,记作p∧q,读作“p且q”。

2、命题p∧q的真假的判定:一假必假

p q p∧q

真 真 真

真 假 假

假 真 假

假 假 假

(3)非

1、对于一个命题p如果仅将它的结论否定,就得到一个新命题,记作┐p,读作“非p”。

2、命题┐p的真假的判定:真假相对

p ┐p

真 假

假 真

《几何原本》命题(特指)

特指欧几里德的《几何原本》中的被证明的命题,如下列48个命题:

1. 在一个已知有限直线上作一个等边三角形。

2. 由一个已知点(作为端点)作一线段等於已知线段。

3. 已知两条不相等的线段,试由大的上边截取一条线段使它等于另外一条。

4. 如果两个三角形有两边分别等于两边,而且这些相等的线段所夹的角相等,那么,它们的底边等于底边,三角形全等于三角形,而且其余的角等于其余的角,即那等边所对的角。

5. 在等腰三角形中,两底角彼此相等;并且,若向下延长两腰,则在底以下的两角也彼此相等。

6. 如果在一个三角形中,有两角彼此相等,则等角所对的边也彼此相等。

7. 在已知线段上(从它的两个端点)作出相交於一点的二线段,则不可能在该线段(从它的两个端点)的同侧作出相交于另一点的另二条线段,使得作出的二线段分别等于前面二线段。即每个交点到相同端点的线段相等。

8. 如果两个三角形的一个有两边分别等于另一个的两边,并且一个的底等于另一个的底,则夹在等边中间的角也相等。

9. 二等分一个己知直线角。

10. 二等分已知有限直线。

11. 由已知直线上一已知点作一直线和已知直线成直角。

12. 由已知无限直线外一已知点作该直线的垂线。

13. 一条直线和另一条直线所交成的邻角,或者是两个直角或者它们等于两个直角的和。

14. 如果过任意直线上点有两条直线不在这一直线的同侧,且和直线所成邻角和等于二直角,则这两条直线在同一直线上。

15. 如果两直线相交,则它们交成的对顶角相等。

16. 在任意的三角形中,若延长一边,则外角大於任何一个内对角。

17. 在任何三角形中,任何两角之和小於两直角。

18. 在任何三角形中,大边对大角。

19. 在任何三角形中,大角对大边。

20. 在任何三角形中,任意两边之和大于第三边。

21. 如果由三角形的一条边的两个端点作相交于三角形内的两条线段,由交点到两端点的线段的和小于三角形其余两边的和。但是,其夹角大于三角形的顶角。

22. 试由分别等于已知三条线段的三条线段作一个三角形:在这样的三条已知线段中,任二条线段之和必须大于另外一条线段。

23. 在已知直线和它上面一点,作一个直线角等于己知直线角。

24. 如果两个三角形中,一个的两条边分别与另一个的两条边相等,且一个的夹角大于另一个的夹角,则夹角大的所对的边也较大。

25. 如果在两个三角形中,一个的两条边分别等于另一个的两条边,则第三边较大的所对的角也较大。

26. 如果在两个三角形中,一个的两个角分别等于另一个的两个角,而且一边等于另一个的一边。即或者这边是等角的夹边,或者是等角的对边。则它们的其他的边也等于其他的边,且其他的角也等于其他的角。

27. 如果一直线和两直线相交所成的错角彼此相等,则这二直线互相平行。

28. 如果一直线和二直线相交所成的同位角相等,或者同旁内角的和等于二直角,则二直线互相平行。

29. 一条直线与两条平行直线相交,则所成的内错角相等,同位角相等,且同旁内角的和等于二直角。

30. 一些直线平行于同一条直线,则它们也互相平行。

31. 过一已知点作一直线平行於已知直线。

32. 在任意三角形中,如果延长一边,则外角等于二内对角的和,而且三角形的三个内角的和等于二直角。

33. 在同一方向(分别)连接相等且平行的线段(的端点),它们自身也相等且平行。

34. 在平行四边形面片中,对边相等,对角相等且对角线二等分其面片。

35. 在同底上且在相同两平行线之间的平行四边形彼此相等。

36. 在等底上且在相同二平行线之间的平行四边形彼此相等。

37. 在同底上且在相同二平行线之间的三角形彼此相等。

38. 在等底上且在相同二平行线之间的三角形彼此相等。

39. 在同底上且在底的同一侧的相等三角形必在相同二平行线之间。

40. 等底且在底的同侧的相等三角形也在相同二平行线之间。

41. 如果一个平行四边形和一个三角形既同底又在二平行线之间,则平行四边形是这个三角形的二倍。

42. 用已知直线角作平行四边形,使它等于已知三角形。

43. 在任何平行四边形中,对角线两边的平行四边形的补形彼此相等。

44. 用已知线段及已知直线角作一个平行四边形,使它等于已知三角形。

45. 用一个已知直线角作一平行四边形使它等于已知直线形。

46. 在已知线段上作一个正方形。

47. 在直角三角形中,直角所对的边上的正方形等于夹直角两边上正方形的和。

48. 如果在一个三角形中,一边上的正方形等于这个三角形另外两边上正方形的和,则夹在后两边之间的角是直角。

定理是经过受逻辑限制的证明为真的叙述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。

相信为真但未被证明的数学叙述为猜想,当它经过证明后便是定理。它是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述可以不经过成为猜想的过程,成为定理。

如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。

在命题逻辑,所有已证明的叙述都称为定理。

从命题的题设出发,经过逐步推理,来判断命题的结论是否正确的过程,叫做证明。

要证明一个命题是真命题,就是证明凡符合题设的所有情况,都能得出结论。要证明一个命题是假命题,只需举出一个反例说明命题不能成立。证明一个命题,一般步骤如下:

(1)按照题意画出图形;

(2)分清命题的条件的结论,结合徒刑,在“已知”一项中写出题设,在“求证”一项中写出结论;

(3)在“证明”一项中,写出全部推理过程。

设A和B是命题公式, 证明:A→B,A=>B

a->b读作“若A则B”即“A是B的必要条件”。

设A和B是命题公式,如果是A→B永真式,则称A永真蕴涵B,记作A=>B

,或称 A=>B是永真蕴涵式。

离散数学题,即要你证明我写的个真命题成立

如何进行概念,命题,公式定理证明的教学

如出示不同形状,不同大小的直角三角形,让学生观察比较、分析,找出共性的东西,学生不难发现有一个角是直角的三角形叫做直角三角形.

命题,定理,证明是什么意思

命题有真有假。

定理是已证明是正确的。

证明就是辨别命题的真假。