1. 首页 > 科技

求函数的导数。 复合函数的导数怎么求

求函数的导数。复合函数的导数怎么求

常用函数的导数表

常用函数的导数表如图:

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

扩展资料

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

资料来源:导数_百度百科

求函数的导数

不知你的题目是否打全了?如果求右导数的话,首先必须确定这个函数是右连续的,也就是必须有f(0)=1,即a+b=1才行,否则如果不连续的话,右导数肯定是不存在的。

如果有了a+b=1这个条件,右导数应该用定义来求

lim [x→0+] [ln(1+x)/x - 1]/x

=lim [x→0+] [ln(1+x) - x]/x²

洛必达法则

=lim [x→0+] [1/(1+x) - 1]/(2x)

=lim [x→0+] [1 - (1+x)]/(2x(1+x))

=lim [x→0+] -1/(2(1+x))

=-2

另外:你写的那个不是函数的右导数,你求的是导函数的右极限,不过对于这道题,导函数的右极限与右导数是相等的,你的那个极限可以算出来,分子分母同乘以(1+x),然后用洛必达法则。

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。

高数常见函数求导公式

高数常见函数求导公式如下图:

求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。

在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。

扩展资料:

一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性,定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:

(1)若在(a,b)内f'(x)>0,则f(x)在[a,b]上的图形单调递增;

(2)若在(a,b)内f’(x)<0,则f(x)在[a,b]上的图形单调递减;

(3)若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。

函数的导数就是一点上的切线的斜率。当函数单调递增时,斜率为正,函数单调递减时,斜率为负。

导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。

可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f'(x)dx。

参考资料:搜狗百科——导数

基本函数求导公式

基本公式如下:

计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。

只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。

扩展资料:

导数的求导法则

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

参考资料:导数-搜狗百科