f'(a) g'(a) 为什么一定存在 ? 导函数不存在的点 两侧导数异号不也是极值点吗?
为什么导数不存在的点也有可能是极值点?怎么判定他是不可导点
因为极值点只关心f(x)在区域内的局部函数值,不关心是否可导。因此函数f(x)在极值点x0处可能不可导,如
在x=0处不可导。
如果函数在某点的左右导数不相等,则函数在这点就是不可导点。
极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。可导函数f(x)的极值点必定是它的驻点。但是反过来,函数的驻点却不一定是极值点。
扩展资料:
求函数的极值:
寻求函数整个定义域上的最大值和最小值是数学优化的目标。如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。
因此,寻找整个定义域上最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小的)一个。
费马定理可以发现局部极值的微分函数,它表明它们必须发生在关键点。可以通过使用一阶导数测试,二阶导数测试或高阶导数测试来区分临界点是局部最大值还是局部最小值,给出足够的可区分性。
对于分段定义的任何功能,通过分别找出每个零件的最大值(或最小值),然后查看哪一个是最大(或最小),找到最大值(或最小值)。
为什么二阶导数不存在的点也可能是函数拐点?
因为二阶导数不存在的点,左右两边的二阶导数的符号可能是不同的。
在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
直接根据拐点的定义,可以得到曲线存在拐点的第一充分条件。
设函数f(x)在点
的某邻域内具有二阶连续导数,若
的两侧
异号,则(
,f(
))是曲线y=f(x)的一个拐点;若
的两侧
同号,则(
,f(
))不是曲线的拐点。
扩展资料:
可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:
⑴求f''(x);
⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;
⑶对于⑵中求出的每一个实根或二阶导数不存在的点
,检查f''(x)在
左右两侧邻近的符号,那么当两侧的符号相反时,点(
,f(
))是拐点,当两侧的符号相同时,点(
,f(
))不是拐点。
什么是导数不存在的点
倒数不存在的点即为无法求导的点,通常有两种情况,一种函数在该点不连续,另一种是在该点连续但左右导数不相等。详细说明如下:
1、函数在该点有断点的时候,函数不连续就无法求导。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
2、函数在该点连续,但在该点的左右导数不相等。如Y=|X|,在x=0处连续,在x处的左导数为-1,右导数为1,但左右不相等,则函数在x=0不可导。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
扩展资料
导数的计算
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
导数的求导法则
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
参考资料来源:百度百科-导数
为什么极限存在导数不一定存在呢,举一个反例
导数要求函数在那一点连续,比喻函数y=|x|,当x→0,极限=0,但在x=0时没有导数,因为函数在0处不连续。导数的几何意义就是一条曲线在某个点的切线的斜率,在y=|x|中,在x=0处,函数分成了两条直线,交点就是x=0、y=0,这个交点根本就没有切线,自然就没有导数了。