1. 首页 > 科技

高数,莱布尼茨公式怎么运用到这个题? 高数莱布尼茨公式

高数,莱布尼茨公式怎么运用到这个题?高数莱布尼茨公式

莱布尼茨公式例题解析

u=x^2,v=sin2x代入公式

要点是u的2阶以上导数都为0

所以代入公式后只剩下3项.

再自己总结一下v=sin2x的高阶导数规律

即可得答案.

自己做一下,哪里不明白再追问

高数里的那个莱布尼茨公式怎么用啊???

用于x,sin x,e^x等简单函数复合的情况下求导

莱布尼茨公式有什么用啊?怎么用?

咖啡奶茶 咖啡奶茶 牛顿-莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。下面就是该公式的证明全过程:

我们知道,对函数f(x)于区间[a,b]上的定积分表达为:

b(上限)∫a(下限)f(x)dx

现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数:

Φ(x)= x(上限)∫a(下限)f(x)dx

但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。为了只表示积分上限的变动,我们把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:

Φ(x)= x(上限)∫a(下限)f(t)dt

接下来我们就来研究这个函数Φ(x)的性质:

1、定义函数Φ(x)= x(上限)∫a(下限)f(t)dt,则Φ’(x)=f(x)。

证明:让函数Φ(x)获得增量Δx,则对应的函数增量

ΔΦ=Φ(x+Δx)-Φ(x)=x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt

显然,x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt=x+Δx(上限)∫x(下限)f(t)dt

而ΔΦ=x+Δx(上限)∫x(下限)f(t)dt=f(ξ)•Δx(ξ在x与x+Δx之间,可由定积分中的中值定理推得,

也可自己画个图,几何意义是非常清楚的。)

当Δx趋向于0也就是ΔΦ趋向于0时,ξ趋向于x,f(ξ)趋向于f(x),故有lim Δx→0 ΔΦ/Δx=f(x)

可见这也是导数的定义,所以最后得出Φ’(x)=f(x)。

2、b(上限)∫a(下限)f(x)dx=F(b)-F(a),F(x)是f(x)的原函数。

证明:我们已证得Φ’(x)=f(x),故Φ(x)+C=F(x)

但Φ(a)=0(积分区间变为[a,a],故面积为0),所以F(a)=C

于是有Φ(x)+F(a)=F(x),当x=b时,Φ(b)=F(b)-F(a),

而Φ(b)=b(上限)∫a(下限)f(t)dt,所以b(上限)∫a(下限)f(t)dt=F(b)-F(a)

把t再写成x,就变成了开头的公式,该公式就是牛顿-莱布尼茨公式。

积极、诚心为你解答,给个好评吧亲,谢谢啦

高等数学大一莱布尼茨公式怎样理解,我不明白它怎样来

如图 不用管它怎么来的记住这个公式就行