如图,怎么证明级数发散的? 如何证明交错级数发散
如何证明调和级数是发散的?
太复杂了,一大堆文字...有时间写下来,嘻嘻
------------------------------------------
Euler 1734年的推导过程——
从log(1 + 1/x) = 1/x - 1/(2x^2) + 1/(3x^3) - 1/(4x^4) + .... 出发,于是
1/x = log[(x + 1)/x] + 1/(3x^3) - 1/(4x^4) + ....
代入x = 1,2,3,4...n,就给出
1/1 = log(2/1) + 1/2 - 1/3 + 1/4 -1/5 + ...,
1/2 = log(3/2) + 1/(2*4) - 1/(3*8) + 1/(4*16) -...
..........................
1/n = log[(n+1)/n] + 1/(2*n^2) - 1/(3*n^3) + 1/(4*n^4) -...
相加,并注意到每一个对数项都是两个队输之差,就得到
Sn = 1/1 + 1/2 + 1/3 + 1/4 + ..... + 1/n
= log(n+1) + 1/2*(1 + 1/4 + 1/9 + 1/16 + ... + 1/n^2)
- 1/3*(1 + 1/8 + 1/27 + ... + 1/n^3)
+ 1/4*(1 + 1/16 + 1/81 + ... + 1/n^4)
.....
将上面式子简化为
Sn = log(n+1) + C
其中 C 就是著名的欧拉常数,大约为0.577218
至此可以看出,Sn 在 n 趋近于无穷的时候数值将单调增长,没有边界(无穷大)....级数发散....
怎么证明调和级数是发散的
方法一,直接从这个结果出发:
S2n-Sn>=1/2
对于任意n成立
则把n变成2n
S4n-S2n>=1/2成立
以次类推S8n-S4n>=1/2
S 下标2^k n -S下标2^(k-1)n >=1/2
把这些统统相加
S 下标2^k n >=k/2
再令k->无穷,即2^k n->无穷,则S无穷=无穷
方法二,利用极限收敛定义:
若一个数列极限存在,则其必为柯西数列
柯西数列An表示对于任意m>n
有|Am-An|->0,当m,n->无穷
此处显然永远有m=2n时,|Sm-Sn|>=1/2与Cauchy数列定义矛盾,所以发散
证明级数发散
我高中啊来 错了别怪
U1=m>源0
Un+1/un≥n/n+1 得到Un>0
U2/U1≥1/2.....
Uk/U(k-1)≥(k-1)/k
∴Uk/U1≥1/k
则∑2113n=1 到无穷5261大4102 un≥m(1+1/2+.....+1/n) 1+1/2+.....+1/n为调和1653级数发散
∴∑n=1 到无穷大Un发散
怎么证明1/n发散
法一:证明:
∑1/n
=1+1/2+1/3+……+1/n+……
=1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+……+1/16)+(1/17+1/18+……+1/32)+1/33+……+1/n……
>1+1/2+2*1/4+4*1/8+8*1/16+16*1/32+……+……=1+m/2+……。
m是1/2的个数随着n的增加而增大。当n→∞时,m→∞。∴1+m/2+……发散,故∑1/n发散。
另外,在级数敛散性判断中,un→0只是必要条件非充分条件,“无穷多个无穷小”累积在一起,便“量变到质变”。
法二:如图,用到了比较审敛法。
扩展资料:
调和级数是发散的,有三种方法证明。
1、比较审敛法:
2、积分判别法:
3、反证法:
4、相关思考:
当n越来越大时,调和级数的项变得越来越小,然而,慢慢地——非常慢慢地——它的和将增大并超过任何一个有限值。调和级数的这种特性使一代又一代的数学家困惑并为之着迷。下面的数字将有助于我们更好地理解这个级数。这个级数的前1000项相加约为7.485;
前100万项相加约为14.357;前10亿项相加约为21;前一万亿项相加约为28,等等。更有学者估计过,为了使调和级数的和等于100,必须把10的43次方项加起来。
调和级数是发散的,这是一个令人困惑的事情,事实上调和级数令人不耐烦地慢慢向无穷大靠近,我们可以很容易的看到这个事实,因为S2n-Sn>1/2,而调和级数的第一项是1,也就是说调和级数的和要想达到51那么它需要有2的100次方那个多项才可以。
而2的100次方这个项是一个大到我们能够处理范围以外的数字,在计算机元科学领域,这属于一个不可解的数。
参考资料来源:搜狗百科-调和级数