利用留数求函数Laplace逆变换 F(s)=s^2+2s-1/s(s-1)^2?
利用留数求函数的拉氏逆变换
syms s t laplace( f(t), t, s ) 拉普拉斯变换 ilaplace( F(s), s, t ) 拉普拉斯变换的逆变换
求拉氏逆变换F(s)=s^2+2s-1 / s(s-1)^2,不要用留数的方法
F(s)=(s²+2s-1)/s(s-1)²
=[(s²-2s+1)+s+(s-1)]/s(s-1)²
=1/s+1/(s-1)²-1/s(s-1)
= 2/s-1/(s-1)+1/(s-1)²
由拉氏逆变换公式
L^(-1)[1/s]=u(t)
L^(-1)[1/(s+a)]=e^(-at)
L^(-1)[1/(s+a)²]=te^(-at)
得
L^(-1)[F(s)]
=L^(-1)[2/s-1/(s-1)+1/(s-1)²]
=2L^(-1)[1/s]- L^(-1)[1/(s-1)]+ L^(-1)[1/(s-1)²]
=2u(t)-e^t+te^t (t≥0)
另外,如果:
F(s)=s²+2s-[1/s(s-1)²
=s²+2s+[(s-1)-s]/s(s-1)²
=s²+2s+1/s(s-1)-1/(s-1)²
=s²+2s-1/s+1/(s-1)-1/(s-1)²
则由拉氏逆变换公式
L^(-1)[s^(n)]=δ^(n)(t)
L^(-1)[1/s]=u(t)
L^(-1)[1/(s+a)]=e^(-at)
L^(-1)[1/(s+a)²]=te^(-at)
得
L^(-1)[F(s)]
=L^(-1)[s²+2s-1/s+1/(s-1)-1/(s-1)²]
=L^(-1)[s²]+2L^(-1)[s]-L^(-1)[1/s]+L^(-1)[(s-1)]-L^(-1)[1/(s-1)²]
=δ''(t)+2δ'(t)-u(t)+e^t-te^t (t≥0)
利用留数,求这个函数的拉普拉斯逆变换。
这个是不可以的,我总结的是对于真分式是不可以用留数法的,因为会缺失冲激及其导数的逆拉氏变换,这点和初值定理类似,你可以验证一下
求F(X)=1[s^2(1+s^2)]拉普拉斯变换
F(s)=1/s^2-1/(s^2+1) 1/s^2------>t 1/(s^2+1)------>sint
f(t)=t-sint