1. 首页 > 科技

求解方程组 求解二元一次方程组

求解方程组求解二元一次方程组

求方程组怎么算

方程组是多个未知数的方程等式,最根本的思想就是化成一个未知数,

比如

x+y=6

x-y=2

将两个式子相减加【这样就能化成一个未知数】,

则:x+x+y+(-y)=6+2

所以2x=8【只有一个未知数】,

x=4

再把x=4代入任意一个原方程,

则4+y=6或4-y=2

y=2

方程组怎么解?

解方程组的方法大致上有画图法、矩阵法、代入法、消元法等等。

1、代入法

如要解决以下方程组︰

代入法求解过程是︰

然后把 

代入到其中一条方程式里︰

所以它的解为:

2、画图法

画图法就是把两条方程式画在图上,两线的交叉点就是解了。 如要解决以下方程组︰

首先要把要把它们画在图上︰

绿色为 

红色为

两线的交叉点就是它们的解了:

3、消元法

如要以消元法解决以下方程组︰

把两个方程式等号左右两边分别相减︰上式-下式得,

然后把 

代入到其中一条方程式里︰

得出:

扩展资料:

消元思想

“消元”是解二元一次方程组的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法。

消元方法一般分为:代入消元法,简称:代入法 ;加减消元法,简称:加减法 ;顺序消元法 ;整体代入法。

代入消元法

将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法。

加减法

当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法。

换元法

解一些复杂的问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化。该方法在减少多项式项数,降低多项式结构复杂程度等方面能起到独到作用。

参考资料来源:搜狗百科-方程组

怎么解方程组

消元法

1)代入消元法

用代入消元法的一般步骤是:

1.选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式;

2.将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;

3.解这个一元一次方程,求出 x 或 y 值;

4.将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;

5。把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。

例:解方程组 :x+y=5①

6x+13y=89②

解:由①得x=5-y③

把③代入②,得6(5-y)+13y=89

得 y=59/7

把y=59/7代入③,得x=5-59/7

得x=-24/7

∴ x=-24/7

y=59/7 为方程组的解

我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。

2)加减消元法

①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;

②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;

③解这个一元一次方程;

④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;

⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。

用加减消元法解方程组的的第一种方法

例:解方程组:

x+y=9①

x-y=5②

解: ①+②

得: 2x=14

∴x=7

把x=7代入①

得: 7+y=9

∴y=2

∴方程组的解是:x=7

y=2

用加减消元法解方程组的的第二种方法

例:解方程组:

x+y=9①

x-y=5②

解: ①+②

得: 2x=14

∴x=7

①-②

得: 2y=4

∴y=2

∴方程组的解是:x=7

y=2

利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,使方程只含有一个未知数而得以求解,再代入方程组的其中一个方程。像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法。

怎么解二元一次方程组 ?

给你个公式把

设一元二次方程为

{ax+by=c①

{dx+fy=g②

把①×d-②×a得

(bd-af)y=cd-ga

y=(cd-ga)/(bd-af)

同理可解

x=(cf-gb)/(af-db)

不懂,请追问,祝愉快O(∩_∩)O~