线性代数问题? 线性代数常见问题
- 线性代数到底是解决什么问题的?线性代数本身是研究线性空间及映射结构的,如果从解决问题的角度讲,线性代数是一种速记语言,用于描述一些其它问题,所以可以.
一个线性代数的问题?detAB=detA*detB=detB*detA=detBA 这个没问题,这是行列式的性质 如果detAB=detBA.那么AB=BA?这个明显不对 detAB=detBA,当A,B都是方阵时,是恒成立的 而AB=BA一般情况下是不成立的,除非A,B可交换
关于线性代数的几个问题线性代数(linear algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组.向量空间是现代数学的一个重要课题.
线性代数 线性表示的问题向量组等价,是两向量组中的各向量,都可以用另一个向量组中的向量线性表示.矩阵等价,是存在可逆变换(行变换或列变换,对应于1个可逆矩阵),使得一个矩阵之.
线性代数问题1、必须要有平方那一行! 2、|x-x1 y-y1 | |x1-x2 y1-y2| =0 明白吗,下面的是方向向量. 只不过高位的方向向量,要用行列式的代数余子式来计算! 若有疑问可以追问!望采纳!尊重他人劳动!谢谢!
线性代数问题这是利用增广矩阵同时做初等行变换,A|B 化成E|C此时有A^(-1)B=C也即有B=AC,即B的列向量都可以用A的列向量来线性表示,线性表示中的系数,正好是C中列向量的各行元素.
线性代数问题已知A的特征值和相应的特征向量,A又是实对称矩阵,就可以进行相似对角化,对角线上的元素的值就是A的特征值.P是分别属于λ1,λ2的特征向量单位化得到的正交矩阵.P=(p1,p2),那么AP=(Ap1,Ap2)=(λ1p1,λ2p2)=Pdiag(λ1,λ2).再两边同时左乘P的逆就得到加红部分最开始的式子辣.正交矩阵的转置即是正交矩阵的逆.所以对A进行幂运算时,相邻的P和P的转置相称为I便可省区,剩下一个P和一个P的转置就在两头辣.
线性代数具体解决的是什么问题?线性代数应用非常广泛,我也无法说清线性代数具体解决什么问题的,但线性代数是如今许多应用的理论和算法的基础,同时也是解决许多问题的一个工具. 线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科.随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具.
线性代数可以解决什么问题线性代数(linear algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组.向量空间是现代数学的一个重要课题.
~~~~~~~~~~~~~~~~~~~~~线性代数的问题,请解.1.选C,因为只要有一个特征值为0,那个这个矩阵对应的行列式的值就为0,那么就. 把第1个加上第2个,结果再加第3个,等于0,说明线性相关;D中,只有两个向量,.