在再生核希尔伯特空间中的K范数怎么求? 二项式定理展开式公式
范数的空间范数
有限维空间上的范数具有良好的性质,主要体现在以下几个定理:
性质1:对于有限维赋范线性空间的任何一组基,范数是元素(在这组基下)的坐标的连续函数。
性质2(Minkowski定理):有限维线性空间的所有范数都等价。
性质3(Cauchy收敛原理):实数域(或复数域)上的有限维线性空间(按任何范数)必定完备。
性质4:有限维赋范线性空间中的序列按坐标收敛的充要条件是它按任何范数都收敛。 这里以Cn空间为例,Rn空间类似。
最常用的范数就是p-范数。若,那么
可以验证p-范数确实满足范数的定义。其中三角不等式的证明不是平凡的,这个结论通常称为闵可夫斯基(Minkowski)不等式。
当p取1,2,∞的时候分别是以下几种最简单的情形:
1-范数:║x║1=│x1│+│x2│+…+│xn│
2-范数:║x║2=(│x1│2+│x2│2+…+│xn│2)1/2
∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│)
其中2-范数就是通常意义下的距离。
对于这些范数有以下不等式:║x║∞ ≤ ║x║2 ≤ ║x║1 ≤ n1/2║x║2 ≤ n║x║∞
另外,若p和q是赫德尔(Hölder)共轭指标,即1/p+1/q=1,那么有赫德尔不等式:
|<x,y>| = ||xH*y| ≤ ║x║p║y║q
当p=q=2时就是柯西-许瓦兹(Cauchy-Schwarz)不等式。
matlab求范数
A = randn(5);
nrm1 = norm(A, 1);
nrm2 = norm(A);
nrmInf = norm(A, inf);
nrmFro = norm(A, 'fro');
detA = det(A);
invA = inv(A);
rankA = rank(A);
没有正交空间这个说法。
伯努利概型的Cnk怎么求。?例如 C上4下5怎么求…?
5!/(5-4)!=5*4*3*2=120
n在下,k在上
Cnk可看为在n个空格中任意选k个空格,如C5,4是在5个中选4个,那么第一个有5种可能,第二个有4种可能···第四个有2种可能,所以C5,4=5*4*3*2=120;
Cnk=n!/(n-k)!=n*(n-1)*···*(n-k+1)
请教范数的简单解释?
若X是数域K上的线性空间,泛函 ║·║: X->R 满足: 1. 正定性:║x║≥0,且║x║=0 <=> x=0; 2. 正齐次性:║cx║=│c│║x║; 3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。 那么║·║称为X上的一个范数。 (注意到║x+y║≤║x║+║y║中如令y=-x,再利用║-x║=║x║可以得到║x║≥0,即║x║≥0在定义中不是必要的。) 如果线性空间上定义了范数,则称之为赋范线性空间。 注记:范数与内积,度量,拓扑是相互联系的。 1. 利用范数可以诱导出度量:d(x,y)=║x-y║,进而诱导出拓扑,因此赋范线性空间是度量空间。 但是反过来度量不一定可以由范数来诱导。 2. 如果赋范线性空间作为(由其范数自然诱导度量d(x,y)=║x-y║的)度量空间是完备的,即任何柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为巴拿赫(Banach)空间。 3. 利用内积<·,·>可以诱导出范数:║x║=<x,x>^{1/2}。 反过来,范数不一定可以由内积来诱导。当范数满足平行四边形公式║x+y║^2+║x-y║^2=2(║x║^2+║y║^2)时,这个范数一定可以由内积来诱导。 完备的内积空间称为希尔伯特(Hilbert)空间。 4. 如果去掉范数定义中的正定性,那么得到的泛函称为半范数(seminorm或者叫准范数),相应的线性空间称为赋准范线性空间。完备的赋准范线性空间称为Fréchet空间。 对于X上的两种范数║x║α,║x║β,若存在正常数C满足 ║x║β≤C║x║α 那么称║x║β弱于║x║α。如果║x║β弱于║x║α且║x║α弱于║x║β,那么称这两种范数等价。 可以证明,有限维空间上的范数都等价,无限维空间上至少有阿列夫(实数集的基数)种不等价的范数。