dx/(x-2)³=d? 求详解
更新时间:2021-10-04 19:05:39 • 作者:REGINA •阅读 4209
∫xarctanxdx 求详细过程
∫ x * arctanx dx
= ∫ arctanx d(x²/2)
= (x²/2)arctanx - (1/2)∫ x² d(arctanx)
= (x²/2)arctanx - (1/2)∫ x²/(x² + 1) dx
= (x²/2)arctanx - (1/2)∫ (x² + 1 - 1)/(x² + 1) dx
= (x²/2)arctanx - (1/2)∫ dx + (1/2)∫ dx/(x² + 1)
= (x²/2)arctanx - x/2 + (1/2)arctanx + c
∫dx/x²(x+2)
先对被积分化简
1/x²(x+2)=x/x²(x²+2x)=[1/x²-1/(x²+2x)]/2=1/2x²-1/4x+1/4(x+2)
然后再分别积分。积分后以此为-1/2x , -(lnx)/4 , (ln(x+2))/4
所以原积分式=(ln(1+2/x)/4-1/2x+c
讨论dx*dx等于多少;分析d²x、dx²、(dx)²;解释d²z/dx²;讨论一下!!!
求方程d²y/dx²=2的通解 要过程
积分一次,得到
dy/dx=2x+C1
再次积分,得到
y=x²+C1·x+C2