1. 首页 > 科技

求因式分解 求根法解因式分解

求因式分解求根法解因式分解

数学因式分解的12种方法

1、 提公因法

如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、 分解因式x -2x -x(2003淮安市中考题)

x -2x -x=x(x -2x-1)

2、 应用公式法

由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a +4ab+4b (2003南通市中考题)

解:a +4ab+4b =(a+2b)

3、 分组分解法

要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)

例3、分解因式m +5n-mn-5m

解:m +5n-mn-5m= m -5m -mn+5n

= (m -5m )+(-mn+5n)

=m(m-5)-n(m-5)

=(m-5)(m-n)

4、 十字相乘法

对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)

例4、分解因式7x -19x-6

分析: 1 -3

7 2

2-21=-19

解:7x -19x-6=(7x+2)(x-3)

5、配方法

对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x +3x-40

解x +3x-40=x +3x+( ) -( ) -40

=(x+ ) -( )

=(x+ + )(x+ - )

=(x+8)(x-5)

解方程依据

1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;

2、等式的基本性质

性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。

(1)a+c=b+c

(2)a-c=b-c

性质2:等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。

用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:

a×c=b×c 或a/c=b/c

性质3:若a=b,则b=a(等式的对称性)。

性质4:若a=b,b=c则a=c(等式的传递性)。

100道因式分解及答案

1.把下列各式分解因式

(1)12a3b2-9a2b+3ab;

(2)a(x+y)-(a-b)(x+y);

(3)121x2-144y2;

(4)4(a-b)2-(x-y)2;

(5)(x-2)2+10(x-2)+25;

(6)a3(x+y)2-4a3c2.

2.用简便方法计算

(1)6.42-3.62;

(2)21042-1042

(3)1.42×9-2.32×36

第二章 分解因式综合练习

一、选择题

1.下列各式中从左到右的变形,是因式分解的是( )

(A)(a+3)(a-3)=a2-9 (B)x2+x-5=(x-2)(x+3)+1

(C)a2b+ab2=ab(a+b) (D)x2+1=x(x+ )

2.下列各式的因式分解中正确的是( )

(A)-a2+ab-ac= -a(a+b-c) (B)9xyz-6x2y2=3xyz(3-2xy)

(C)3a2x-6bx+3x=3x(a2-2b) (D) xy2+ x2y= xy(x+y)

3.把多项式m2(a-2)+m(2-a)分解因式等于( )

(A)(a-2)(m2+m) (B)(a-2)(m2-m) (C)m(a-2)(m-1) (D)m(a-2)(m+1)

4.下列多项式能分解因式的是( )

(A)x2-y (B)x2+1 (C)x2+y+y2 (D)x2-4x+4

5.下列多项式中,不能用完全平方公式分解因式的是( )

(A) (B) (C) (D)

6.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( )

(A)4x (B)-4x (C)4x4 (D)-4x4

7.下列分解因式错误的是( )

(A)15a2+5a=5a(3a+1) (B)-x2-y2= -(x2-y2)= -(x+y)(x-y)

(C)k(x+y)+x+y=(k+1)(x+y) (D)a3-2a2+a=a(a-1)2

8.下列多项式中不能用平方差公式分解的是( )

(A)-a2+b2 (B)-x2-y2 (C)49x2y2-z2 (D)16m4-25n2p2

9.下列多项式:①16x5-x;②(x-1)2-4(x-1)+4;③(x+1)4-4x(x+1)+4x2;④-4x2-1+4x,分解因式后,结果含有相同因式的是( )

(A)①② (B)②④ (C)③④ (D)②③

10.两个连续的奇数的平方差总可以被 k整除,则k等于( )

(A)4 (B)8 (C)4或-4 (D)8的倍数

二、填空题

11.分解因式:m3-4m= .

12.已知x+y=6,xy=4,则x2y+xy2的值为 .

13.将xn-yn分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为 .

14.若ax2+24x+b=(mx-3)2,则a= ,b= ,m= .(第15题图)

15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是 .

三、(每小题6分,共24分)

16.分解因式:(1)-4x3+16x2-26x (2) a2(x-2a)2- a(2a-x)3

(3)56x3yz+14x2y2z-21xy2z2 (4)mn(m-n)-m(n-m)

17.分解因式:(1) 4xy–(x2-4y2) (2)- (2a-b)2+4(a - b)2

18.分解因式:(1)-3ma3+6ma2-12ma (2) a2(x-y)+b2(y-x)

19、分解因式

(1) ; (2) ;

(3) ;

20.分解因式:(1) ax2y2+2axy+2a (2)(x2-6x)2+18(x2-6x)+81 (3) –2x2n-4xn

21.将下列各式分解因式:

(1) ; (2) ; (3) ;

22.分解因式(1) ; (2) ;

23.用简便方法计算:

(1)57.6×1.6+28.8×36.8-14.4×80 (2)39×37-13×34

(3).13.7

24.试说明:两个连续奇数的平方差是这两个连续奇数和的2倍.

25.如图,在一块边长为a厘米的正方形纸板四角,各剪去一个边长为 b(b< )厘米的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积.

26.将下列各式分解因式

(1)

(2) ;

(3) (4)

(5)

(6)

(7) (8)

(9) (10)(x2+y2)2-4x2y2

(12).x6n+2+2x3n+2+x2 (13).9(a+1)2(a-1)2-6(a2-1)(b2-1)+(b+1)2(b-1)2

27.已知(4x-2y-1)2+ =0,求4x2y-4x2y2+xy2的值.

28.已知:a=10000,b=9999,求a2+b2-2ab-6a+6b+9的值.

29.证明58-1解被20∽30之间的两个整数整除

30.写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).

31.观察下列各式:

12+(1×2)2+22=9=32

22+(2×3)2+32=49=72

32+(3×4)2+42=169=132

……

你发现了什么规律?请用含有n(n为正整数)的等式表示出来,并说明其中的道理.

32.阅读下列因式分解的过程,再回答所提出的问题:

1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]

=(1+x)2(1+x)

=(1+x)3

(1)上述分解因式的方法是 ,共应用了 次.

(2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,则需应用上述方法 次,结果是 .

(3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).

34.若a、b、c为△ABC的三边,且满足a2+b2+c2-ab-bc-ca=0.探索△ABC的形状,并说明理由.

35.阅读下列计算过程:

99×99+199=992+2×99+1=(99+1)2=100 2=10 4

1.计算:

999×999+1999=____________=_______________=_____________=_____________;

9999×9999+19999=__________=_______________=______________=_______________.

2.猜想9999999999×9999999999+19999999999等于多少?写出计算过程.

求因式分解的所有方法和技巧

因式分解

因式分解(factorization)

因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.

⑴提公因式法

①公因式:各项都含有的公共的因式叫做这个多项式各项的~.

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵运用公式法

①平方差公式:. a^2-b^2=(a+b)(a-b)

②完全平方公式: a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).

立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).

④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]

a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)

⑶分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

※ 多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止.

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

经典例题:

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2

解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-(2x)^2

=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]

=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)

2.证明:对于任何数x,y,下式的值都不会为33

x^5+3x^4y-5x^3y^2+4xy^4+12y^5

解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

=(x+3y)(x^4-5x^2y^2+4y^4)

=(x+3y)(x^2-4y^2)(x^2-y^2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y)

当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立

因式分解的十二种方法

把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:

1、 提公因法

如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、 分解因式x -2x -x(2003淮安市中考题)

x -2x -x=x(x -2x-1)

2、 应用公式法

由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a +4ab+4b (2003南通市中考题)

解:a +4ab+4b =(a+2b)

3、 分组分解法

要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)

例3、分解因式m +5n-mn-5m

解:m +5n-mn-5m= m -5m -mn+5n

= (m -5m )+(-mn+5n)

=m(m-5)-n(m-5)

=(m-5)(m-n)

4、 十字相乘法

对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)

例4、分解因式7x -19x-6

分析: 1 -3

7 2

2-21=-19

解:7x -19x-6=(7x+2)(x-3)

5、配方法

对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x +3x-40

解x +3x-40=x +3x+( ) -( ) -40

=(x+ ) -( )

=(x+ + )(x+ - )

=(x+8)(x-5)

6、拆、添项法

可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)

解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b)

7、 换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

例7、分解因式2x -x -6x -x+2

解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x

=x [2(x + )-(x+ )-6

令y=x+ , x [2(x + )-(x+ )-6

= x [2(y -2)-y-6]

= x (2y -y-10)

=x (y+2)(2y-5)

=x (x+ +2)(2x+ -5)

= (x +2x+1) (2x -5x+2)

=(x+1) (2x-1)(x-2)

8、 求根法

令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )

例8、分解因式2x +7x -2x -13x+6

解:令f(x)=2x +7x -2x -13x+6=0

通过综合除法可知,f(x)=0根为 ,-3,-2,1

则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)

9、 图象法

令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )

例9、因式分解x +2x -5x-6

解:令y= x +2x -5x-6

作出其图象,见右图,与x轴交点为-3,-1,2

则x +2x -5x-6=(x+1)(x+3)(x-2)

10、 主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

例10、分解因式a (b-c)+b (c-a)+c (a-b)

分析:此题可选定a为主元,将其按次数从高到低排列

解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)

=(b-c) [a -a(b+c)+bc]

=(b-c)(a-b)(a-c)

11、 利用特殊值法

将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例11、分解因式x +9x +23x+15

解:令x=2,则x +9x +23x+15=8+36+46+15=105

将105分解成3个质因数的积,即105=3×5×7

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值

则x +9x +23x+15=(x+1)(x+3)(x+5)

12、待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

例12、分解因式x -x -5x -6x-4

分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。

解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d)

= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd

所以 解得

则x -x -5x -6x-4 =(x +x+1)(x -2x-4)

求100道因式分解及答案

http://www.yh363/shitixitong/shuxue-2/8-2-017.doc

因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)

3.因式分解xy+6-2x-3y=(x-3)(y-2)

4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2

5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)

6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)

7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2

8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)

9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)

10.因式分解a2-a-b2-b=(a+b)(a-b-1)

11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2

12.因式分解(a+3)2-6(a+3)=(a+3)(a-3)

13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)

abc+ab-4a=a(bc+b-4)

(2)16x2-81=(4x+9)(4x-9)

(3)9x2-30x+25=(3x-5)^2

(4)x2-7x-30=(x-10)(x+3)

35.因式分解x2-25=(x+5)(x-5)

36.因式分解x2-20x+100=(x-10)^2

37.因式分解x2+4x+3=(x+1)(x+3)

38.因式分解4x2-12x+5=(2x-1)(2x-5)

39.因式分解下列各式:

(1)3ax2-6ax=3ax(x-2)

(2)x(x+2)-x=x(x+1)

(3)x2-4x-ax+4a=(x-4)(x-a)

(4)25x2-49=(5x-9)(5x+9)

(5)36x2-60x+25=(6x-5)^2

(6)4x2+12x+9=(2x+3)^2

(7)x2-9x+18=(x-3)(x-6)

(8)2x2-5x-3=(x-3)(2x+1)

(9)12x2-50x+8=2(6x-1)(x-4)

40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)

41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)

42.因式分解9x2-66x+121=(3x-11)^2

43.因式分解8-2x2=2(2+x)(2-x)

44.因式分解x2-x+14 =整数内无法分解

45.因式分解9x2-30x+25=(3x-5)^2

46.因式分解-20x2+9x+20=(-4x+5)(5x+4)

47.因式分解12x2-29x+15=(4x-3)(3x-5)

48.因式分解36x2+39x+9=3(3x+1)(4x+3)

49.因式分解21x2-31x-22=(21x+11)(x-2)

50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)

51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)

52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)

53.因式分解x(y+2)-x-y-1=(x-1)(y+1)

54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)

55.因式分解9x2-66x+121=(3x-11)^2

56.因式分解8-2x2=2(2-x)(2+x)

57.因式分解x4-1=(x-1)(x+1)(x^2+1)

58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)

59.因式分解4x2-12x+5=(2x-1)(2x-5)

60.因式分解21x2-31x-22=(21x+11)(x-2)

61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)

62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)

63.因式分解下列各式:

(1)3x2-6x=3x(x-2)

(2)49x2-25=(7x+5)(7x-5)

(3)6x2-13x+5=(2x-1)(3x-5)

(4)x2+2-3x=(x-1)(x-2)

(5)12x2-23x-24=(3x-8)(4x+3)

(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)

(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)

(8)9x2+42x+49=(3x+7)^2 。