1. 首页 > 科技

函数极限计算? 极限函数lim重要公式

函数极限计算?极限函数lim重要公式

函数极限的12种计算方法

很多 1.极限定义 2.洛比达 3.泰勒公式 4.定积分定义 5.等价无穷小代换

6.极限的运算法则 7.夹逼准则 8.数列极限法则(单调有界) 9.函数连续性

10.两个重要极限 尼玛想不出来了 笔记本没带 要不然一定说到12个

用极限运算法则求函数极限

1、利用函数连续性:lim f(x) = f(a) x->a

(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)

2、恒等变形

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)

当然还会有其他的变形方式,需要通过练习来熟练。

3、通过已知极限

特别是两个重要极限需要牢记。

计算函数极限

一、利用极限四则运算法则求极限函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则 lim[f(x)±g(x)]=limf(x)±limg(x)=A±B lim[f(x)?g(x)]=limf(x)?limg(x)=A?B lim==(B≠0)(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有: 1.直接代入法对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。 2.无穷大与无穷小的转换法在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。 3.除以适当无穷大法对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。 4.有理化法适用于带根式的极限。二、利用夹逼准则求极限函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)利用夹逼准则关键在于选用合适的不等式。 三、利用单调有界准则求极限单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。四、利用等价无穷小代换求极限常见等价无穷小量的例子有:当x→0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。五、利用无穷小量性质求极限在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。六、利用两个重要极限求极限使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。七、利用洛必达法则求极限如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。

求函数的极限的四则运算

原发布者:obuahlh

第五节极限运算法则一、无穷小运算法则二、极限的四则运算法则第一章三、复合函数的极限运算法则机动目录上页下页返回结束一、无穷小运算法则定理1.定理有限个无穷小的和还是无穷小.证:考虑两个无穷小的和.设ε>0,当当时,有时,有取δ=min{δ1,δ2,则当0<xx0<δ时,有α+β≤α+β0,ε时,有α≤M取δ=min{δ1,δ2,则当x∈U(x0,δ)时,就有εuα=uα≤MM=ε故即是时的无穷小.推论1.常数与无穷小的乘积是无穷小.推论2.有限个无穷小的乘积是无穷小.机动目录上页下页返回结束例1.求解:sinxy=x1lim=0x→∞x利用定理2可知说明:y=0是的渐近线.机动目录上页下页返回结束二、极限的四则运算法则定理3.若limf(x)=A,limg(x)=B,则有