复变函数问题? 复变函数常见问题
复变函数问题
这个题实际上是要说明对于复变函数而言,幂函数可能是多值的。所谓的多值,就是指对于一个自变量z,z^α会有多个取值。在实变函数里面,这种情况出现得比较少,只有反三角函数会出现多值,而且对这类多值函数取它们的“主值”,这时候多值函数就变成单值函数了。但是在复变函数里面,为了考虑方程所有的根,这时候反而希望兼顾函数的所有值,而不是单个的值。在这个题,决定函数多值性的是整数k。当α为整数的时候,2kα必定是偶数,而函数exp(z)是周期函数,所以当自变量相差2πi的整数倍的时候,函数值是相同的,也就是说函数值和整数k无关,所以这个时候是单值的。当α是有理数的时候,不妨假设α=p/q(既约分数),那么2kα=2kp/q。当k1和k2之间相差q的整数倍的时候,2k1α和2k2α之间的差也是偶数,这个时候还是因为exp(z)的周期性,从而得到exp(i2k1α)和exp(i2k2α)是相等的,因此当不同的k之间相差q的整数倍的时候,函数值是相等的。而如果不同的k之间相差不足q的整数倍,也就是说被q除还有余数,那么函数值就有可能不同。因为不同的余数恰好有0,1,2,……,q-1共q种可能,所以会有q个值。这个时候,幂函数z^α是多值函数,且有q个值。当α是无理数的时候,就不满足整除余数的周期性了,所以对于不同的k值,就有不同的函数值,因此z^α函数也是多值函数,函数值的个数是可数无穷多个。
复变函数,求解。
z=r(cosθ+isinθ) 其中,0<θ<π/3
w=z^3=r^3(cos3θ+isin3θ)
0<3θ<π
所以,w上的象为0<argw<π。
简单的复变函数图像问题
z=x+iy
Im(i/(x+iy))=2
Im(i(x-iy)/(x^2+y^2))=2
x/(x^2+y^2)=2
(x^2+y^2)-x/2=0
(x-1/4)^2+y^2=1/16
生活中有什么问题是需要用复变函数来解决的
复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的.比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的.
比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献.
复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论.它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响.
要用复变函数解决实际问题,复积分肯定要用上.