1. 首页 > 科技

解三角形要用到三角函数对照表吗? 解三角形和三角函数的区别

解三角形要用到三角函数对照表吗?解三角形和三角函数的区别

三角函数和解三角形什么关系,可以用三角函数表达解三角形上的内容吗?

解三角形就是已知三角形中三个量至少含有一边,求其他三个元素。

三个内角关系,内角和定理

边角关系:正弦定理和余弦定理,

常用还有面积关系及计算

三角函数是解三角形的基础知识,

求范围时可用三角函数的最值问题或基本不等式。

解三角形属于三角函数吗

两者牛头不对马嘴。解三角形就是算出各个角度和边

三角函数和解三角形有啥关系。

三角函数是任意角的三角函数,

而解三角形是这个问题限定在(0,180°)的范围中,

在这个范围中是可以用三角函数解决问题的。

三角函数及解三角形的有关公式

展开全部

同角三角函数间的基本关系式:

·平方关系:

sin^2α+cos^2α=1

1+tan^2α=sec^2α

1+cot^2α=csc^2α

·积的关系:

sinα=tanα×cosα

cosα=cotα×sinα

tanα=sinα×secα

cotα=cosα×cscα

secα=tanα×cscα

cscα=secα×cotα

·倒数关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

正切等于对边比邻边,

·[1]三角函数恒等变形公式

·两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·辅助角公式:

Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中

sint=B/(A²+B²)^(1/2)

cost=A/(A²+B²)^(1/2)

tant=B/A

Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)

tan(2α)=2tanα/[1-tan²(α)]

·三倍角公式:

sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)

cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)cos(60-α)

tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式

sin²(α)=(1-cos(2α))/2=versin(2α)/2

cos²(α)=(1+cos(2α))/2=covers(2α)/2

tan²(α)=(1-cos(2α))/(1+cos(2α))

·万能公式:

sinα=2tan(α/2)/[1+tan²(α/2)]

cosα=[1-tan²(α/2)]/[1+tan²(α/2)]

tanα=2tan(α/2)/[1-tan²(α/2)]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos²α

1-cos2α=2sin²α

1+sinα=(sinα/2+cosα/2)²

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

证明:

左边=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)

=[sin(n+1)x+sinnx-sinx]/2sinx=右边

等式得证

sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

证明:

左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边

等式得证

[编辑本段]三角函数的诱导公式

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

[编辑本段]正余弦定理

正弦定理是指在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)

余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA

角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边

斜边与邻边夹角a

sin=y/r

无论y>x或y≤x

无论a多大多小可以任意大小

正弦的最大值为1 最小值为-1

三角恒等式

对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC

证明:

已知(A+B)=(π-C)

所以tan(A+B)=tan(π-C)

则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ

[编辑本段]部分高等内容

·高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i)

cosx=[e^(ix)+e^(-ix)]/2

tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

此时三角函数定义域已推广至整个复数集。

·三角函数作为微分方程的解:

对于微分方程组 y=-y'';y=y'''',有通解Q,可证明

Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。

补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣