数学极限问题? 高等数学极限问题
更新时间:2021-08-27 11:11:57 • 作者:GREGG •阅读 7445
数学极限问题
数学极限问题
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
数学中极限的问题
当x→x,是X到X连续变化的,不论是正向还是负向变化。附近的值都要有定义的。
数学极限问题
函数f(x)=1/(1+x).
用分点将区间[0,1]平均分成n份,分点是
x[k]=k/n,k=1,2,...,n.
利用定积分的定义,和式
∑{f(x[k])*(1/n),k=1...n}
当n->∞时的极限等于定积分
∫{f(x)dx,[0,1]}
而f(x[k])*(1/n)=1/(n+k),通项相等,也就是说你的式子等于上面的和式。
于是
lim[1/(n+1) +1/(n+2)+1/(n+3)+……1/(n+n),n->∞]
=∫{f(x)dx,[0,1]}
=∫{1/(1+x)dx,[0,1]}
=ln(1+x)|[0,1]
=ln(1+1)-ln(1+0)
=ln2
见http://wenwen.sogou/z/q654675616.htm?si=4