求不定积分详细过程(求不定积分,求详细过程)
求不定积分,求详细过程
The L.C.M. of 1/3 and 1/2 is 1/6
So let x = t^6 then dx = (6t^5)dt and we have
∫ x^(1/3) / [x(√x + x^(1/3))] dx
= ∫ t² / [t^6(t³+t²)] * (6t^5)dt
= 6∫ t/(t³+t²) dt
= 6∫ [(1+t)-t] / [t(1+t)] dt
= 6∫ 1/t dt - 6∫ 1/(1+t) dt
= 6ln|t| - 6ln|1+t| + C
= 6ln|x^6| - 6ln|1+x^(1/6)| + C
= ln|x| - 6ln|1+x^(1/6)| + C
Let t = √(2x+3) => t² = 2x+3 => 2tdt = 2dx => tdt = dx
∫ [2-√(2x+3)]/(1-2x) dx
= ∫ (2-t)/{1-2[(t²-3)/2]} tdt
= ∫ (2-t)/(4-t²) tdt
= ∫ (2-t)/[(2-t)(2+t)] tdt
= ∫ t/(2+t) dt
= ∫ [(2+t)-2]/(2+t) dt
= ∫ dt - 2∫ dt/(2+t)
= t - 2ln|2+t| + C
= √(2x+3) - 2ln| 2+√(2x+3) | + C
求不定积分详细过程
∫u/(sinu)²du=∫ud(-cotu)=-ucotu+∫cotudu=-ucotu+ln|sinu|+C
求不定积分(过程)
用分部积分法
①∫arcsinx dx
= xarcsinx - ∫x darcsinx
= xarcsinx - ∫x/√(1 - x²) dx
= xarcsinx + ∫1 /[2√(1 - x²)] d(1 - x²)
= xarcsinx + √(1 - x²) + C
② ∫ arccosx dx
=xarccosx-∫x darccosx
=xarccosx+∫x/√(1-x²)dx
=xarccosx-√(1-x²)+C
求不定积分,要详细过程
积分化为(省略积分号)=-(cosxdcosx)/(1+cos^2x),如果你学积分时间不长,可做个代换:u=cosx更清楚
=-udu/(1+u^2)=-(1/2)d(1+u^2)/(1+u^2)=-(1/2)ln(1+u^2)+C,再将u换回cosx,在积分熟练后,这个代换就不必做,而直接计算