数学填空题?(初一数学100道选择题 填空题 附答案)
初一数学100道选择题 填空题 附答案
是一共100道?
一、62616964757a686964616fe4b893e5b19e31333335306162选择题:(每小题3分,共21分)
题号 1 2 3 4 5 6 7
答案
每题给出4个答案,其中只有一个是正确的,请把选出的答案编号填在上面的答题表中,否则不给分.
1、已知方程3x+a=2的解是5,则a的值是
A、—13 B、—17 C、13 D、17
2、已知等腰三角形的周长是63cm,以一腰为边作等边三角形,其周长为69cm,那么等腰三角形的底边长是
A、23cm B、17 cm C、21 cm D、6 cm
3、在2004年印度洋海啸中,小红打开自己的储蓄盒,把积赞的零花钱拿出来数了数,发现1元、2元的共有15张,共20元钱,那么小红1元、2元的各有
A、5张、10张 B、10张、5张 C、8张、7张 D、7张、8张
4、下列图形中,有无数条对称轴的是
A、等边三角形 B、平行四边形 C、等腰梯形 D、圆
5、对于数据2,2,3,2,5,2,10,2,5,2,3,下列说法正确的有
①众数是2;
②众数与中位数的数值不相等;
③中位数与平均数的数值相等;
④平均数与众数的数值相等。
A、1个 B、2个 C、3个 D、4个
6、下列四种正多边形中,用同一种图形不能铺满平面的是
A、正三角形 B、正方形 C、正五边形 D、正六边形
7、某药店在“非典”期间,市场上抗病毒药品紧缺的情况下,将某药品提价100%,物价部门查处后,限定其提价幅度只能是原价的10%,则该药品现在降价的幅度是
A、45% B、50% C、90% D、95%
二、填空题:(每小题4分,共32分,请将答案填入答题表中)
题号 8 9 10 11
答案
题号 12 13 14 15
答案
8、方程组 的解是 。
9、等腰直角三角形ABC中,∠A=90o,BC=6cm,BD平分∠A BC交AC天D,DE⊥BC于E,则△CDE的周长为_ __。
10、若多边形内角和为1080o,则这个多边形是 边形。
11、一艘船顺流航行的速度是每小时20千米,逆流航行的速度是每小时12千米,则船在静水中的速度为 ,水流速度为 。
12、在一次篮球比赛中,某主力队员在一次比赛中投22球,14中,得28分,除了3分球全中外,他还投中了 个两分和 个罚球。
13、已知2x—y=3,那么1—4x+2y= 。
14、如图1所示,已知∠1=80o,∠F=15o,∠B=35o,
那么∠A= ,∠DEA= 。
(图1)
15、 由多边形一个顶点所引的对角线将这个多边形分成了10个三角形,则这个多边形的内角和为 。
参考答案
一、选择题
1、A 2、B 3、B 4、D 5、A 6、C 7、A
二、填空题:(共10小题,每题2分,共20分,请将答案填入答题表中)
8、x=3,y=-1; 9、6cm; 10、八 ; 11、16千米/小时候 4千米/小时; 12、8 13、-5; 14、45º 85
1.当x= 时,方程 x+1=2成立.
2.方程-3x=3-4x的解是 。
3.当x= 时,y1=x+3与y2=2-x相等。
4.x的3倍与2的差等于4,x= 。
5.一本书周长为68cm,长比宽多6cm。设这本书宽为xcm,长为 cm,则可通过解方程 ,求出宽x= cm,长等于 cm。
6.棱锥的侧面是 形。
7.如图将正方体切去一块,所得图形有 个面。
8.如图由A图经过 得到B图。
9.将两块相同的直角三角板( 300 )相等的边拼在一起,能拼成 种平面图形。
二、选择题 (每题3分,计24分 )
10。下列各数中,是方程2x-1=5解的 是( )
A.2 B.3 C.4 D.5
11.如果x=-2是方程 a(x+3)= a+x的解,那么 a2- +1= ( )
A.17 B.18 C.19 D.20
12.已知A=2, B=x+1, 若 A•B= 则 x= ( )
A.2 B.1 C. 0 D. -1
13. 3x+ 与3(x- )互为相反数,则x= ( )
A. - B. - C.- D.-
14.下列图形中的某一图形绕L旋转一周后成为圆台的是( )
15.将左图绕O点按顺时针方向 旋转900后,得到的图形是( )
16.空心圆柱从三个方向看正确的图形是(看不见的部分用虚线表示)( )
17、下列图形不能折成正方体的是( )
附参考答案:
1.2 2.3 3. - 4.2 5. x+6, 2[x+(x+6)]=68, x=14, 20 6. 三角形,7. 7,
8. 翻折, 9. 6 , 10. B, 11.C, 12.D,13D, 14.C,15. B, 16.A, 17.A,
º; 15、1800º;
选择题
1.已知(x+y)∶(x-y)=3∶1,则x∶y=( )。
A、3∶1 B、2∶1 C、1∶1 D、1∶2
2.方程-2x+ m=-3的解是3,则m的值为( )。
A、6 B、-6 C、 D、-18
3.在方程6x+1=1,2x= ,7x-1=x-1,5x=2-x中解为 的方程个数是( )。
A、1个 B、2个 C、3个 D、4个
4.根据“a的3倍与-4绝对值的差等于9”的数量关系可得方程( )。
A、|3a-(-4)|=9 B、|3a-4|=9
C、3|a|-|-4|=9 D、3a-|-4|=9
5.若关于x的方程 =4(x-1)的解为x=3,则a的值为( )。
A、2 B、22 C、10 D、-2
答案与解析
答案:1、B 2、A 3、B 4、D 5、C
解析:
1.分析:本题考查对等式进行恒等变形。
由(x+y)∶(x-y)=3∶1,知x+y=3(x-y),化简得:x+y=3x-3y,
得2x-4y=0,即x=2y,x∶y=2∶1。
2.分析:∵ 3是方程-2x+ m=-3的解,
∴ -2×3+ m=-3,
即-6+ m=-3,
∴ m=-3+6,——根据等式的基本性质1
∴ m=6,——根据等式的基本性质2
∴ 选A。
3.分析:6x+1=1的解是0,2x= 的解是 ,7x-1=x-1的解是0,5x=2-x的解是 。
4.略。
5.分析:因为x=3是方程 =4(x-1)的解,故将x=3代入方程满足等式。
一、 多变量型
多变量型一元一次方程解应用题是指在题目往往有多个未知量,多个相等关系的应用题。这些未知量只要设其中一个为x,其他未知量就可以根据题目中的相等关系用含有x的代数式来表示,再根据另一个相等关系列出一个一元一次方程即可。
例一:(2005年北京市人教)夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施。某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度。求只将温度调高1℃后两种空调每天各节电多少度?
分析:本题有四个未知量:调高温度后甲空调节电量、调高温度后乙空调节电量、清洗设备后甲空调节电量、清洗设备后乙空调节电量。相等关系有调高温度后甲空调节电量-调高温度后乙空调节电量=27、清洗设备后乙空调节电量=1.1×调高温度后乙空调节电量、调高温度后甲空调节电量=清洗设备后甲空调节电量、清洗设备后甲空调节电量+清洗设备后乙空调节电量=405。根据前三个相等关系用一个未知数设出表示出四个未知量,然后根据最后一个相等关系列出方程即可。
解:设只将温度调高1℃后,乙种空调每天节电x度,则甲种空调每天节电 度。依题意,得:
解得:
答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度。
二、 分段型
分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题。解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决。
例二:(2005年东营市)某水果批发市场香蕉的价格如下表:
购买香蕉数
(千克) 不超过
20千克 20千克以上
但不超过40千克 40千克以上
每千克价格 6元 5元 4元
张强两次共购买香蕉50千克(第二次多于第一次),共付出264元, 请问张强第一次、第二次分别购买香蕉多少千克?
分析:由于张强两次共购买香蕉50千克(第二次多于第一次),那么第二次购买香蕉多于25千克,第一次少于25千克。由于50千克香蕉共付264元,其平均价格为5.28元,所以必然第一次购买香蕉的价格为6元/千克,即少于20千克,第二次购买的香蕉价格可能5元,也可能4元。我们再分两种情况讨论即可。
解:
1) 当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:
6x+5(50-x)=264
解得:x=14
50-14=36(千克)
2)当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:
6x+4(50-x)=264
解得:x=32(不符合题意)
答:第一次购买14千克香蕉,第二次购买36千克香蕉
例三:(2005年湖北省荆门市)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是( )
住院医疗费(元) 报销率(%)
不超过500元的部分 0
超过500~1000元的部分 60
超过1000~3000元的部分 80
……
A、1000元 B、1250元 C、1500元 D、2000元
解:设此人住院费用为x元,根据题意得:
500×60%+(x-1000)80%=1100
解得:x=2000
所以本题答案D。
三、 方案型
方案型一元一次方程解应用题往往给出两个方案计算同一个未知量,然后用等号将表示两个方案的代数式连结起来组成一个一元一次方程。
例四:(2005年泉州市)某校初三年级学生参加社会实践活动,原计划租用30座客车若干辆,但还有15人无座位。
(1)设原计划租用30座客车x辆,试用含x的代数式表示该校初三年级学生的总人数;
(2)现决定租用40座客车,则可比原计划租30座客车少一辆,且所租40座客车中有一辆没有坐满,只坐35人。请你求出该校初三年级学生的总人数。
分析:本题表示初三年级总人数有两种方案,用30座客车的辆数表示总人数:30x+15
用40座客车的辆数表示总人数:40(x-2)+35。
解:(1)该校初三年级学生的总人数为:30x+15
(2)由题意得:
30x+15=40(x-2)+35
解得:x=6
30x+15=30×6+15=195(人)
答:初三年级总共195人。
四、 数据处理型
数据处理型一元一次方程解应用题往往不直接告诉我们一些条件,需要我们对所给的数据进行分析,获取我们所需的数据。
例五:(2004年北京海淀区)解应用题:2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:
行驶区间 车次 起始时刻 到站时刻 历时 全程里程
A地—B地 K120 2:00 6:00 4小时 264千米
请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.
行驶区间 车次 起始时刻 到站时刻 历时 全程里程
A地—B地 K120 2:00 264千米
解:
行驶区间 车次 起始时刻 到站时刻 历时 全程里程
A地—B地 K120 2:00 4:24 2.4小时 264千米
分析:通过表一我们可以得知提速前的火车速度为264÷4=66千米/时,从而得出提速后的速度,再根据表二已经给的数据,算出要求的值。
解:设列车提速后行驶时间为x小时. 根据题意,得
经检验,x=2.4符合题意.
答:到站时刻为4:24,历时2.4小时
例六:(2005浙江省)据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1 500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站的里程数(单位:千米) 1500 1130 910 622 402 219 72 0
例如,要确定从B站至E站火车票价,其票价为 (元).
(1) 求A站至F站的火车票价(结果精确到1元);
(2) 旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的?(要求写出解答过程).
解: (1) 解法一:由已知可得 .
A站至F站实际里程数为1500-219=1281.
所以A站至F站的火车票价为 0.12 1281=153.72 154(元)
解法二:由已知可得A站至F站的火车票价为 (元).
(2)设王大妈实际乘车里程数为x千米,根据题意,得: .
解得 x= (千米).
对照表格可知, D站与G站距离为550千米,所以王大妈是D站或G站下的车.
代数第六章能力自测题
一元一次不等式和一元一次不等式组
初中数学网站http://emath.126
分式方程
(一)填空
关于y的方程是_____.
(二)选择
A.x=-3; B.x≠-3;
C.一切实数; D.无解.
C.无解; D.一切实数.
A.x=0; B.x=0,x=1;
C.x=0,x=-1; D.代数式的值不可能为零.
A.a=5; B.a=10;
C.a=10; D.a=15.
A.a=-2; B.a=2;
C.a=1; D.a=-1.
A.一切实数; B.x≠7的一切实数;
C.无解; D.x≠-1,7的一切实数.
A.a=2; B.a只为4;
C.a=4或0; D.以上答案都不对.
A.a>0; B.a>0且a≠1;
C.a>0且a≠0; D.a<0.
A.a<0; B.a<0或a=1;
C.a<0或a=2; D.a>0.
(三)解方程
51.甲、乙两人同时从A地出发,步行30千米到B地甲比乙每小时多走1千米,结果甲比乙早到1小时,两人每小时各走多少千米?
http://219.226.9.43/Resource/CZ/CZSX/DGJC/CSSX/D2/math0003ZW1_0019.htm
数学填空题10道
3.05千米=( 3 )千米( 50 )米 10立方米10立方分米=( 10.01 )立方米
3又4分之3 时=( 3 )时(45 )分 2平方米20平方分米= ( 2.2 )平方米
2又8分之5 日=( 2 )日( 15 )时 42600平方米=(4 )公顷(2600 )平方米
2.25时=( 2 )时( 15 )分 10.01千米=( 10 )千米( 10 )米
6.15元=( 6 )元( 1 )角(5 )分 4米6分米8厘米=( 468 )厘米
数学填空题
1、甲数的3倍与乙数的7分之3相等,甲数:乙数=(1):(7)。
2、用20以内的四个合数组成一个比值是3分之2的比例式,可以是(4/6 6/9 8/12 10/15 12/18)。
3、一种精密仪器长8毫米,在比例尺为16:1的图纸上,应画(12.4)厘米长。
求初一上数学100道填空题
初一上98个填空题,2个选择题
1.-(-5 )的倒数是_________,相反数是__________,绝对值是__________。
2.若|x|+|y|=0,则x=__________,y=__________。
3.若|a|=|b|,则a与b__________。
4.因为到点2和点6距离相等的点表示的数是4,有这样的关系 ,那么到点100和到点999距离相等的数是_____________;到点 距离相等的点表示的数是____________;到点m和点–n距离相等的点表示的数是________。
5.计算: =_________。
6.已知 ,则 =_________。
7.如果 =2,那么x= .
8.到点3距离4个单位的点表示的有理数是_____________。 9.________________________范围内的有理数经过四舍五入得到的近似数3.142。
10.小于3的正整数有_____.
11. 神舟八号于2011年11月1日5时58分由改进型“长征二号”火箭顺利发射升空,此次火箭的起飞质量为497000公斤,数字497000用科学计数法可以表示为 _____________。
12.数轴上与表示-1的点的距离等于两个单位长度的点所表示的数是 ____________ 。
13、小朋友在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为: ____________ 。
14、若方程(a-1)x -2=3是关于x的一元一次方程,则a的值为_______。
15、 有理数和 __无理数_____统称为实数。
16、整数包括 _______ 、 _______ 和 _______ ;
17、分数包括 _______ 和 _______ 。
18、最小的正整数是 _______ ;最小的自然数是 _______ ;最大的负整数是 _______ 。
19、0既不是正数,也不是 _______ ,0是中性数。
20、如果“盈利10%”记为+10%,那么“亏损6%”记为 _______ 。
21、如果60m表示“向北走60m”,那么“向南走40m”可以表示为 _______ 。
22、若李明同学家里去年收入3万元,记作3万元,则去年支出2万元,记作 _______ 。
23、 若规定向东为正,则向西走了13m可记作 _______ 。
24、若太平洋最深处低于海平面11034米,记作-11034米,则珠穆朗玛峰高出海平面8848米,记作_______ 。
25、+10千米表示王玲同学向南走了10千米,那么-9千米表示_______;0千米表示 _______ 。
26、 在月球表面上,白天阳光垂直照射的地方温度高达127℃,夜晚温度可降到-183℃,那么-183℃表示的意义为 _______ 。
27、七(8)班数学兴趣小组在一次数学智力大比拼的竞赛中的平均分数为90分,张红得了85分,记作-5分,则小明同学行92分,可记为 _______ ,李聪得90分可记为 _______ ,程佳+8分,表示 _______。
28、有理数中,最小的正整数是____,最大的负整数是____。29、数轴上表示正数的点在原点的___,原点左边的数表示___,____点表示零。数轴上示-5的点离开原点的距离是___个单位长度,数轴上离开原点6个单位长度的点有____个,它们表示的数是____。
30、在1.5-7.5之间的整数有_____,在-7.5与-1.5之间的整数有_____
31、已知下列各数:-23、-3.14、 ,其中正整数有__________,整数有______,负分数有______,分数有_________。
32、五个有理数相乘,积为负数,这五个数中的正数个数为__________。
33、 —5的倒数为 ,0.04的倒数为__________
34、若一个数的倒数就是它本身,则这个数为__________
35、若a、b互为倒数,则2ab=__________
36、一个数的平方等于36,则这个数为__________
37、一个数的平方等于它本身,这个数是__________ .
38、一个数的立方等于它本身,这个数是__________
39、 —23
(—2)3(填“>”、“<”或“=”).
40、当a________时,a与-a必有一个是负数;
41、在数轴上,与原点0相距5个单位长度的点所表示的数是________;
42、在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;
43、在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.
44、用“有”、“没有”填空: 在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.
45、用“都是”、“都不是”、“不都是”填空: 所有的整数________负整数;小学里学过的数________正数; 带有“+”号的数________正数; 有理数的绝对值________正数; 若|a|+|b|=0,则a,b________零; 比负数大的数________正数.
46.用“一定”、“不一定”、“一定不”填空:-a________是负数;当a>b时,________有|a|>|b|; 在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数; |x|+|y|________是正数; 一个数________大于它的相反数; 一个数________小于或等于它的绝对值; 如果-x=-(-11),那么x=________; 绝对值不大于4的负整数是________;
47、比-12小5的数是__________ ;比-12小-5的数是__________ 48、小明在小卖部买了一袋洗衣粉发现包装上标有这样一段字样净重(800±5)g. 请说明其含义__________
49、某足球队在一场比赛中上半场负5球下半场胜4球•那么全场比赛该队净胜球为_______。
50、12的相反数与-7的绝对值的和是____________________。
51、一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温__________________。
52、在数轴上,-4与-6之间的距离是____________________。 53、若a=6,b=-2,c=-4,并且a-b+(-c)-(-d)=1,则d的值是__________。
54、若一个数的50%是-5.85,则这个数是_________________。
55、一个数的平方等于81,则这个数是____________________。
56、如果|a|=2.3,则a=__________________________。
57、计算-|-6/7|=___________________。
58、绝对值大于2而小于5的所有数是____________________。
59、有一列数,观察规律,并填写后面的数,-5,-2,1,4,_______,________,________
60、http://www.docin/p-298006757.html(网址内含34个填空题)
94、翻开数学书,连续看了3页,页码的和为453,则这3页的页码分别是第____页,第_______页,第________页.
95、近似数3.1×105精确到________位,有________个有效数字.
96、.一个角的补角比它的余角的3倍大10°,则这个角等于________.
97、开学时,对班上的男生进行了单杆引体向上的测验,以能做8次为标准, 超过的次数用正数表示,不足的次数用负数表示,该班男生的成绩如下: 成绩 2 -1 0 3 -2 -3 1 4 人数 4 3 3 4 5 4 5 2 则该班男生的达标率约为:_______
98、一家商店将某种微波炉按原价提高40%后标价,又以8折优惠卖出, 结果每台微波炉比原价多赚180元,这种微彼炉原价是________元.
99、近似数2.30103保留的有效数字有 ( )
A.两个, B.三个, C.五个, D.六个
100、下列各方程中,是一元一次方程的是 ( )
A.5x+y=1 B. +5x=3
C.x2-3x +2=0 D.x+2y=y+z