求图中导数求解化简过程(求导数,化简过程详细点)
求导数,化简过程详细点
y=arctan[(x^2+1)/(x^2-1)]^(1/2)
y'=1/{1+[(x^2+1)/(x^2-1)]}*{[(x^2+1)/(x^2-1)]^(1/2)}'
=[2x^2/(x^2-1)]*(1/2)[(x^2+1)/(x^2-1)]^(1/2-1)*[(x^2+1)/(x^2-1)]'
=[x^2/(x^2-1)]*[(x^2+1)/(x^2-1)]^(-1/2)*[(x^2+1)'(x^2-1)-(x^2+1)(x^2-1)']/(x^2-1)^2
=[x^2/(x^2-1)]*[(x^2+1)/(x^2-1)]^(-1/2)*[2x(x^2-1)-(x^2+1)2x]/(x^2-1)^2
=[x^2/(x^2-1)]*[(x^2+1)/(x^2-1)]^(-1/2)*(-4x)/(x^2-1)^2
=-4x^3(x^2+1)^(-1/2)*(x^2-1)^(-7/2)
=-4x^3/[(x^2+1)^(1/2)*(x^2-1)^(7/2)]
求导化简过程
y=ln(x+√x^2+a^2)
那么y对x 求导得到
y'=1/(x+√x^2+a^2) *(x+√x^2+a^2)'
而显然
(x+√x^2+a^2)'
=1 +2x/2√x^2+a^2
=(x+√x^2+a^2)/√x^2+a^2
所以就解得
y'=1/(x+√x^2+a^2) *(x+√x^2+a^2)/√x^2+a^2
=1/√x^2+a^2
隐函数求导?求化简的详细过程?
隐函数求导:arctan(y/x)=ln√(x²+y²),求dy/dx
解:设F(x,y)=arctan(y/x)-ln√(x²+y²)=arctan(y/x)-(1/2)ln(x²+y²)=0
则dy/dx=-(∂F/∂x)/(∂F/∂y)...........(1);
其中∂F/∂x=-(y/x²)/[1+(y/x)²]-(1/2)(2x)/(x²+y²)=-y/(x²+y²)-x/(x²+y²)=-(x+y)/(x²+y²)
∂F/∂y=(1/x)/[1+(y/x)²]-(1/2)[2y/(x²+y²)]=x/(x²+y²)-y/(x²+y²)=(x-y)/(x²+y²)
代入(1)式即得dy/dx=[(x+y)/(x²+y²)]/[(x-y)/(x²+y²)]=(x+y)/(x-y)
【看不清楚你写的,请自己对照。】
求教导数的化简
把它看做-4乘以x的-1次方,然后用公式。