线性代数,这种线性映射应该怎么做呀?(在数学中,线性映射什么是)
在数学中,线性映射什么是
在数学中,线性映射(也叫做线性变换或线性算子)是在两个向量空间之间的函数,它保持向量加法和标量乘法的运算。术语“线性变换”特别常用,尤其是对从向量空间到自身的线性映射(自同态)。
在抽象代数中,线性映射是向量空间的同态,或在给定的域上的向量空间所构成的范畴中的态射。
如何理解线性代数
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数是理工类、经管类数学课程的重要内容。在考研中的比重一般占到22%左右。
基本简介
线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数
非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。
线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段线性代数,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。
现代线性代数已经扩展到研究任意或无限维空间。一个维数为 n 的向量空间叫做 n 维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。尽管许多人不容易想象 n 维空间中的向量,这样的向量(即 n 元组)用来表示数据非常有效。由于作为 n 元组,向量是 n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。比如,在经济学中可以使用 8 维向量来表示 8 个国家的国民生产总值(GNP)。当所有国家的顺序排定之后,比如(中国、美国、英国、法国、德国、西班牙、印度、澳大利亚),可以使用向量(v1,v2,v3,v4,v5,v6,v7,v8)显示这些国家某一年各自的 GNP。这里,每个国家的 GNP 都在各自的位置上。
作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。一些e69da5e887aa62616964757a686964616f31333337616536显著的例子有:不可逆线性映射或矩阵的群,向量空间的线性映射的环。线性代数也在数学分析中扮演重要角色,特别在 向量分析中描述高阶导数,研究张量积和可交换映射等领域。
向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。
我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。在实践中与非线性问题的差异是很重要的。
线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。
线性代数怎样求基
R4的基一共4个 α1,α2已经线性无关 只要再找2个与α1,α2线性无关的向量
把α1,α2看成行向量做初等变换化简有
| 1 0 -1 -1 |
| 0 1 2 3 |
也就是说所有的4维向量的前2个元素可以由α1,α2线性表示
要找剩下2个的基 只要后两个元素线性无关就行
最简单的就是α3=(0,0,1,0)‘,α4=(0,0,0,1)’
线性代数,部分相关则整体相关和整体不相关则部分不相关这两个怎么感觉有问题
定理是部分相关则整体相关
你说的是整体相关则部分相关(这本身是一个错误的结论)实际上整体相关不一定能推出部分相关 你的例题说明的是这个问题