1. 首页 > 科技

向量点积计算出来的是什么?(向量叉乘与点乘,运算法则是什么?)

向量点积计算出来的是什么?(向量叉乘与点乘,运算法则是什么?)

向量叉乘与点乘,运算法则是什么?

分清点乘和叉乘

点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。

向量a·向量b=|a||b|cos<a,b>

在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。

叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。

|向量c|=|向量a×向量b|=|a||b|sin<a,b>

向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此

向量的外积不遵守乘法交换率,因为

向量a×向量b=-向量b×向量a

在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘

向量内积是什么?有什么用?

向量的内积,又称向量的数学积或点积,可以用来判断空间中的二面角是不是直角

空间中的两个面是不是垂直!

有什么不明白的可以继续追问,望采纳!

向量叉乘公式是什么啊

叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。 

|向量c|=|向量a×向量b|=|a||b|sin<a,b> 

向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。 

因此 

向量的外积不遵守乘法交换率,因为向量a×向量b= -

向量b×向量a 

在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。 

将向量用坐标表示(三维向量), 

若向量a=(a1,b1,c1),向量b=(a2,b2,c2), 

则 

向量a×向量b= 

| i j k |

|a1 b1 c1|

|a2 b2 c2| 

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1) 

(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。

数学中,既有大小又有方向且遵循平行四边形法则的量叫做向量(vector)。

向量

向量

有方向与大小,分为自由向量与固定向量。

数学中,把只有大小但没有方向的量叫做数量,物理中称为标量。例如距离、质量、密度、温度等。

注:在线性代数中(实数空间/复数空间)的向量是指n个实数/复数组成的有序数组,称为n维向量。α=(a1,a2,…,an) 称为n维向量。其中ai称为向量α的第i个分量。

("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)

在编程语言中,也存在向量。向量有起点,有方向。常用一个带箭头的线段表示。

向量内积公式是什么?

解:a*b=a*b*cos(a和b的夹角)

这是从物理实践中来,在物理计算中,经常会用到一个向量投影到另一个向量的方向,然后再乘以另一个向量的模。而且这样的算法表示固定的物理意义。

由于经常会遇到这种问题,于是有人就这样定义了内积,是为了便于书写和直观辨认。一个式子太长或太复杂就会给计算带来很多的不便,定义了简便的式子有助有从数学上理解物理。