HR数据分析师是什么?(数据分析师是做什么的?)
数据分析师是做什么的?
数据分析师主要工作是在本行业内将各种数据进行搜集、整理、分析,然后根据这些数据进行分析判断,在分析数据后对行业发展、行业知识规则等等进行预测和挖掘。数据分析师是数据师其中的一种,另一种是数据挖掘工程师,两者都是专业型人才。
扩展资料
数据分析师和数据挖掘工程师的区别
1、“数据分析”的重点是观察数据,而“数据挖掘”的重点是从数据中发现“知识规则”。
2、“数据分析”得出的结论是人的智能活动结果,而“数据挖掘”得出的结论是机器从学习集(或训练集、样本集)发现的知识规则。
3、“数据分析”得出结论的运用是人的智力活动,而“数据挖掘”发现的知识规则,可以直接应用到预测。
4、“数据分析”不能建立数学模型,需要人工建模,而“数据挖掘”直接完成了数学建模。
5、相对而言,数据挖掘工程师对统计学,机器学习等技能的要求比数据分析师高得多。
6、很多情况下,数据挖掘工程师同时兼任数据分析师的角色。
参考资料来源:搜狗百科--数据分析师
参考资料来源:搜狗百科--数据师
数据分析师都是干嘛的?薪资一般在什么水平?
从职位薪水来看,数据分析行业的高薪主要分布在长三角、珠三角和京津地区。北京、上海和深圳的薪水位列第一方阵,均薪在10k+;杭州、宁波和广州位列第二方阵,均薪在9k+;其他沿海及内陆区域中心城市,如南京、重庆、苏州、无锡等位于第三方阵,均薪在8k左右。
从职位量来看,北京、上海、深圳和广州位列第一方阵,职位量在30000+,杭州、成都、南京和天津位列第二方阵,职位量在20000+,武汉、西安、郑州等区域中心或省会城市对数据分析职位的需求也相对较高,职位量在10000+。
从行业需求来看,互联网金融、O2O、数据服务、教育、电子商务、文化娱乐领域对数据分析师需求量相比其他行业更大。
不管是在企业还是社会,数据都已经开始扮演越来越重要的“角色”。在这种大势之下,数据分析思维已经不只是数据分析师的“专业”了,包括销售、市场、运营、策划、产品等等前端的职位都需要通过数据分析来帮助自己的工作,甚至连后台的财务、法务、人事等也开始需要通过数据分析来提升效率。可以这么说,如果你在企业之中工作,你未来会开始越来越多的和数据打交道,这个时候数据分析已经成为工作的必要条件。
这里给大家举几个例子:
现在的产品,由于销售渠道开始开始网络化,所以基本上每个产品在做客群划分、竞品分析、销售预测等等工作时都必须基于数据来进行建模并分析。以前那样只要写写产品分析书,画画产品原型,做做产品交互的“好日子”已经过去了。这么说吧,越来越多的公司里,如果产品不能拿数据出来支撑自己的工作,是基本上获取不到什么资源的支持。
再拿运营来说,更加离不开数据了。大到做一个活动,目标人群如何划分,不同人群的方案是什么,预计投入多少产出多少,这些都需要数据支持;小到一个营销话术,也需要切分不通人群进行对照实验来决定。可以说,现在不依靠数据分析的运营已经越来越少。
最后再举一个后台部门的例子。现在的HR在做人力规划时,从人员结构分析到配置策略分析再到成本分析,无论哪一项都需要使用到数据。除了本公司的人力数据外,还需要业务数据,竞对公司数据乃至于整个行业数据。通过大量数据的分析,可以更加精确的制定公司的人力资源战略。
数据分析师主要是做什么工作的
数据分析师工作的流程简单分为两部分,第一部分就是获取数据,第二部分就是对数据进行处理。那么怎么获得数据呢?首先,我们要知道,获取相关的数据,是数据分析的前提。每个企业,都有自己的一套存储机制。因此,基础的SQL语言是必须的。具备基本SQL基础,再学习下其中细节的语法,基本就可以到很多数据了。当每个需求明确以后,都要根据需要,把相关的数据获取到,做基础数据。
获得了数据以后,才能够进行数据处理工作。获取数据,把数据处理成自己想要的东西,是一个关键点。很多时候,有了数据不是完成,而是分析的开始。数据分析师最重要的工作就是把数据根据需求处理好,只有数据跟需求结合起来,才能发挥数据的价值,看到需求的问题和本质所在。如果连数据都没处理好,何谈从数据中发现问题呢?
就目前而言,大数据日益成为研究行业的重要研究目标。面对其高数据量、多维度与异构化的特点,以及分析方法思路的扩展,传统统计工具已经难以应对。所以我们要使用专业的数据分析软件。数据分析工具都有Excel、SPSS、SAS等工具。Excel、SPSS、SAS 这三者对于数据分析师来说并不陌生。但是这三种数据分析工具应对的数据分析的场景并不是相同的,一般来说,SPSS 轻量、易于使用,但功能相对较少,适合常规基本统计分析。而SPSS和SAS作为商业统计软件,提供研究常用的经典统计分析处理。由于SAS 功能丰富而强大,且支持编程扩展其分析能力,适合复杂与高要求的统计性分析。
数据分析师是一个什么样的职业?
数据分析师分布在不同行业中,专门从事行业数据的搜集、整理、分析,并依据数据做出行业研究、评估和预测。数据分析师需要敏锐的数字洞察力,因此,统计、会计、保险、工程经济、金融、数学、计算机等专业的同学对这个行业有明显优势,但其他行业的同学如果对这个职业感兴趣,通过日常学习,掌握一些统计必备技能,亦可以从事此类工作.
主要工作领域:
1、从事投资项目审核审批和招商引资、项目评估、投资决策等工作的政府机构、企业的相关领导以及从业人员。
2、在银行或非银行金融机构、投资管理公司、投资管理顾问公司从事风险投资、产业投资、信贷和投资管理等方面工作的专业从业人员。
3、会计师事务所、资产评估事务所及税务师事务所、律师相关专业人员。
4、学习财务、统计、投资、金融和企业管理等相关专业的在校应届学生。
5、在企事业单位从事市场调查与宣传工作的人士以及具有策划与决策工作职能要求的人士。
6、在不同领域尝试创业以及在投资、金融、资本运营、房地产和企业管理领域发展的各界人士。
数据分析师的工作内容分为四个层面:
1、处理临时需求:解决业务一次性,临时性的数据需求。
2、报表开发:根据业务需要,与开发工程师讨论进行相关报表开发。
3、数据分析与挖掘:与业务同事一起沟通,分析业务问题,提供建议;根据业务需要建立各类挖掘模型。
4、数据产品化:通过数据产品化方式解决结构化业务问题。
数据分析师的基本要求:
1、懂得建立目标
数据分析是为了解决问题而去分析,不是单纯为分析而分析。数据分析是有目的性的。比如:一季度ABC产品的销售情况,是按月份为横坐标建立各部门的图表;各产品线ABC在一季度的销售情况,是按部门为横坐标建立对应的图表。
2、针对不同人群提供不同的结论报告
数据分析要有结论报告,不同的人群报告的侧重点不同。比如管理层,看的是趋势和异常点;营销人员看的是ROI((Return On Investment)产出比率和高用户质量的导入情况;业务人员看的是产品对用户的活跃度等。
3、掌握数据分析工具
如果是互联网数据分析,可以从google GA入门,EXCEL辅助,了解数据分析的基本算法。至于SAS,SPSS这些高级工具不一定需要。
4、不同时期要有不同的KPI(KeyPerformance Indicator,关键绩效指标)
不断的调整目标和发现问题是数据分析精细化的必经过程。