1. 首页 > 科技

求x=t×e的t次方与lny+y=t方的参数方程(参数方程x=e的t次方*sint。y=e的t次方*cosx。求二阶导数y“。求详解)

求x=t×e的t次方与lny+y=t方的参数方程(参数方程x=e的t次方*sint。y=e的t次方*cosx。求二阶导数y“。求详解)

参数方程x=e的t次方*sint。y=e的t次方*cosx。求二阶导数y“。求详解

应该是cost而不是cosx吧

x=(e^t)sint, y=(e^t)cost

∴dx/dt=(e^t)sint+(e^t)cost=(e^t)(sint+cost)

dy/dt=(e^t)cost-(e^t)sint=(e^t)(cost-sint)

∴y'=dy/dx=(dy/dt)/(dx/dt)

=[(e^t)(cost-sint)]/[(e^t)(sint+cost)]

=(cost-sint)/(sint+cost)

y''=dy'/dx=(dy'/dt)/(dx/dt)

=[(-sint-cost)(sint+cost)-(cost-sint)(cost-sint)]/(sint+cost)²/[(e^t)(sint+cost)]

=[e^(-t)][-(sint+cost)²-(cost-sint)²]/(sint+cost)³

=-2[e^(-t)]/(sint+cost)³

参数方程x=e的t次方*cost。y=e的t次方*sint求其导数及二阶导数

因为

dx/dt=e^t * (cost - sint)

dy/dt=e^t * (sint + cost)

所以根据公式

dy/dx=(dy/dt)/(dx/dt)

=(sint + cost)/(cost - sint)

=(tant+1)/(1-tant)

=tan(t+π/4)

另外有

d(dy/dx)/dt=(sec(t + π/4))^2

所以d2y/dx2=(d(dy/dx)/dt) / (dx/dt)

=(sec(t + π/4))^2 / [e^t * (cost - sint)]

=(1/2) * (√2 ) * e^(-t) * (sec(t + π/4))^3

求参数方程x=e^t,y=ln根号(1+t)确定的函数y=f(x)的一阶导数和二阶导数

x=e^t

y=ln√(1+t)

dy/dt=1/[2(1+t)]

dx/dt=e^t

利用参数方程求导的方法

dy/dx=(dy/dt)÷(dx/dt)

=1/[2e^(t)*(1+t)]

d²y/dx²=[d(dy/dx)/dt]÷(dx/dt)

=-0.5e^(-2t)[(2+t)/(1+t)²]

不明白可以追问,如果有帮助,请选为满意回答!

验证参数方程{x=e^t*sint y=e^t*cost 所确定的函数满足关系式(d^2y/dx^2)*(x+y)^2=2(x*dy/dx-y)

x=e^t*sint y=e^t*cost

所以dx/dt=e^t*(sint +cost) ,dy/dt=e^t*(cost-sint)

故dy/dx=(dy/dt) / (dx/dt)= (cost-sint) / (sint +cost)

d^2y/dx^2

=d(dy/dx) /dt * dt/dx

=d[(cost-sint) / (sint +cost)] /dt * dt/dx

= [(-sint-cost)*(sint+cost) -(cost-sint)*(cost-sint)] /(sint+cost)^2 * 1/[e^t*(sint +cost)]

= (-1-2sint*cost -1+2sint*cost)/[e^t*(sint+cost)^3]

= -2 / [e^t*(sint+cost)^3]

所以

(d^2y/dx^2)*(x+y)^2

= -2 / [e^t*(sint+cost)^3] * (e^t*sint +e^t*cost)^2

= -2e^t /(sint+cost)

2(x*dy/dx-y)

=2[e^t*sint * (cost-sint) / (sint +cost) - e^t*cost]

=2e^t *[sint * (cost-sint) -cost*(sint +cost)] /(sint +cost)

=2e^t *[sint*cost -(sint)^2 -cost*sint -(cost)^2] / (sint +cost)

= -2e^t /(sint+cost)

(d^2y/dx^2)*(x+y)^2 =2(x*dy/dx-y) = -2e^t /(sint+cost)

所以这两个式子是相等的