极限等于∞是极限不存在吗? 极限不存在的几种情况
极限是无穷,那极限算不算存在?
极限是无穷,不算存在。
如果函数的极限为±无穷,那么极限算不存在。无穷大并不是极限的存在,它只是表明当x趋向于无穷或某一特定值时f(x)趋向于无穷大,而极限存在必定为某一特定值A。
设函数f(x)在x0的某一去心邻域内有定义(或|x|大于某一正数时有定义)。如果对于任意给定的正数M(无论它多么大),总存在正数δ(或正数X),只要x适合不等式0<|x-x0|<δ(或|x|>X;
即x趋于无穷),对应的函数值f(x)总满足不等式|f(x)|>M,则称函数f(x)为当x→x0(或x→∞)时的无穷大。
扩展资料:
在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。无穷大记作∞,不可与很大的数混为一谈。
无穷大分为正无穷大、负无穷大,分别记作+∞、-∞ ,非常广泛的应用于数学当中。两个无穷大量之和不一定是无穷大;有界量与无穷大量的乘积不一定是无穷大(如常数0就算是有界函数);有限个无穷大量之积一定是无穷大。
函数的极限是无穷算极限存在吗
不能,既然存在就是一个确定的数,无穷大当然不是了。
极限是微积分和数学分析的其他分支最基本的概念之一,连续和导数的概念均由其定义。它可以用来描述一个序列的指标愈来愈大时,序列中元素的性质变化的趋势,也可以描述函数的自变量接近某一个值的时候,相对应的函数值变化的趋势。
扩展资料
极限的性质:
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。
但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”
3、保号性:若(或<0),则对任何(a<0时则是),存在N>0,使n>N时有(相应的xn<m)。
4、保不等式性:设数列{xn} 与{yn}均收敛。若存在正数N ,使得当n>N时有,则(若条件换为xn>yn,结论不变)。
5、和实数运算的相容性:譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。
6、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
当一个函数极限存在和一个函数极限不存在旳乘积是极限存在还是不存在
当存在极限的那个函数极限为0时,极限是有可能存在的,比如当x->0时的函数f(x)=1/x的极限不存在,而g(x)=x的极限存在,即为0,lim f(x)g(x)=1,是存在的,
当存在极限的那个函数极限不等于0时,则二者的乘积的极限不存在。
例如:
1、相乘存在:函数1:y=n,函数2:y=1/n^2
两个相乘后在n趋向无穷的时候极限为0
2、相乘不存在:函数1:y=n^2,函数2:y=1/x
两个相乘后在n趋向无穷的时候极限不存在
扩展资料:
求极限的方法
①利用函数连续性:
(就是直接将趋向值带入函数自变量中,此时要要求分母不能为0)
②恒等变形
当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:
第一:因式分解,通过约分使分母不会为零。
第二:若分母出现根号,可以配一个因子使根号去除。
第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
当然还会有其他的变形方式,需要通过练习来熟练。
③通过已知极限
特别是两个重要极限需要牢记。
④采用洛必达法则求极限
洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。
洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。
参考资料来源:搜狗百科—函数极限