为什么k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90?
- 写出一次函数,反比例函数图像的性质分别是什么?并举例说明加配图
- 一次函数的性质,k,b决定什么?大神解答!
- 一次函数y=kx+b中的k和b是什么意思啊?
- 数学的一次函数中,y=kx+b中的y k x b分别表示什么意思
写出一次函数,反比例函数图像的性质分别是什么?并举例说明加配图
一、一次函数图像的性质
1、y的变化值与对应的x的变化值成正比例,比值为k。
即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。
2、当x=0时,b为函数在y轴上的交点,坐标为(0,b)。
当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。
3、k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。
4、当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。
5、函数图象性质:当k相同,且b不相等,图像平行;
当k不同,且b相等,图象相交于Y轴;
当k互为负倒数时,两直线垂直。
6、平移时:上加下减在末尾,左加右减在中间。
二、反比例函数图像的性质
1、单调性
当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;
当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。
k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
2、相交性
因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交,只能无限接近x轴,y轴。
3、面积
在一个反比例函数图像上任取两点,过点分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为|k|,
反比例函数上一点 向x 、y 轴分别作垂线,分别交于y轴和x轴,则QOWM的面积为|k|,则连接该矩形的对角线即连接OM,则RT△OMQ的面积=½|k|。
4、图像表达
反比例函数图象不与x轴和y轴相交的渐近线为:x轴与y轴。
k值相等的反比例函数图象重合,k值不相等的反比例函数图象永不相交。
|k|越大,反比例函数的图象离坐标轴的距离越远。
5、对称性
反比例函数图象是中心对称图形,对称中心是原点;反比例函数的图象也是轴对称图形,其对称轴为y=x或y=-x;反比例函数图象上的点关于坐标原点对称。
一次函数的性质,k,b决定什么?大神解答!
k决定一次函数的斜率,b决定一次函数的截距(即原点到当x=0时函数的值)。
一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。如果直线与x轴互相垂直,直角的正切值无穷大,故此直线不存在斜率。当直线L的斜率存在时,对于一次函数y=kx+b,(斜截式)k即该函数图像的斜率。
直线的截距分为横截距和纵截距,横截距是直线与X轴交点的横坐标,纵截距是直线与Y轴交点的纵坐标。要求出横截距只需令Y=0,求出X,求纵截距就令X=0,求出Y。如y=x-1横截距为1,纵截距为-1。直线截距可正,可负,可为0。
扩展资料:
一次函数性质
1、y的变化值与对应的x的变化值成正比例,比值为k。
即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。
2、当x=0时,b为函数在y轴上的交点,坐标为(0,b)。
当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。
3、k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。
4、当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。
5、函数图象性质:当k相同,且b不相等,图像平行;
当k不同,且b相等,图象相交于Y轴;
当k互为负倒数时,两直线垂直。
6、平移时:上加下减在末e69da5e887aa3231313335323631343130323136353331333431376565尾,左加右减在中间。
参考资料来源:百度百科-斜率
参考资料来源:百度百科-直线的截距
一次函数y=kx+b中的k和b是什么意思啊?
k表示斜率。b表示常数项(截距)。
一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。
k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。
当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。
一次函数有三种表示方法,如下:
1、解析式法
用含自变量x的式子表示函数的方法叫做解析式法。
2、列表法
把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。
3、图像法
用图象来表示函数关系的方法叫做图象法。
扩展资料:
k,b与函数图象所在象限:
y=kx时(即b等于0,y与x成正比,此时的图象是一条经过原点的直线)
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
y=kx+b(k,b为常数,k≠0)时:
当k>0,b>0,这时此函数的图象经过一,二,三象限;
当k>0,b<0,这时此函数的图象经过一,三,四象限;
当k<0,b>0,这时此函数的图象经过一,二,四象限;
当k<0,b<0,这时此函数的图象经过二,三,四象限。
当b>0时,直线必通过一、二象限;
当b<0时,直线必通过三、四象限。
数学的一次函数中,y=kx+b中的y k x b分别表示什么意思
一次函数的解析式为:f(x)=kx+b。其中k是斜率,不能为0;x表示自变量,b表示y轴截距。且k和b均为常数。先设出函数解析式,再根据条件确定解析式中未知的斜率,从而得出解析式。该解析式类似于直线方程中的斜截式。
扩展资料
一次函数的基本性质
1、y的变化值与对应的x的变化值成正比例,比值为k。
即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。
2、当x=0时,b为函数在y轴上的交点,坐标为(0,b)。
当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。
3、k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。
4、当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。
5、函数图象性质:当k相同,且b不相等,图像平行;
当k不同,且b相等,图象相交于Y轴;
当k互为负倒数时,两直线垂直。
6、平移时:上加下减在末尾,左加右减在中间
参考资料:百度百科-一次函数