1. 首页 > 科技

已知S{x|x=a+b且a,b∈A},T{x|x=|a-b|且a,b∈A},集合A{x|0≤x≤2020},且S∩T=∅?

已知S{x|x=a+b且a,b∈A},T{x|x=|a-b|且a,b∈A},集合A{x|0≤x≤2020},且S∩T=∅?

设A、B是非空集合,定义A*B={X|X属于A并B且x不属于A交B} 已知A={X|Y=根号下2x-x^2},B={Y|y=2^x},则A*B

A={X|Y=√(2x-x^2)}={x|0≤x≤2}

B={Y|y=2^x}={y|y>0}

A∪B=【0,+∞)

A∩B=(0,2】

所以A*B={0}∪(2,+∞)

已知集合A={x|-21},B={x|a≤x≤b},且A∪B={x|x>-2},A

由集合A={x|-2<x<-1或x>1},且A∪B={x|x>-2},可以得出B集合一定包含A集合中空缺的部分,即B={x|-1≤x≤1},

再由A∩B={x|1<x<3},可以得出B={x|x<3},两者结合即可得出B={x|-1≤x<3},所以a=-1,b=3

已知两集合A={x|x=t2+(a+1)t+b,t∈R},B={x|x=-t²-(a-1)t-b,t∈R},且A∩B={x|-1≤x≤2},求常数a,b的值。

解:集合A:x = t2

+ (a + 1)t + b = [t + (a + 1)/2]2 + b – (a + 1)2/4,t∈R,所以x是t的一元二次函数,开口向上有最小值xmin = b – (a + 1)2/4 ;

集合B:x = -t2

– (a – 1)t – b = -[t + (a – 1)/2]2 – b + (a – 1)2/4,t∈R,所以x是t的一元二次函数,开口向下有最大值xmax = -b + (a – 1)2/4 ;

由已知,集合A∩B = {x|-1 ≤ x ≤ 2},说明上述xmin

= b – (a + 1)2/4 = -1①,而且xmax = -b + (a – 1)2/4

= 2②;

把①+②,可得(a – 1)2/4

– (a + 1)2/4 = 1,去分母可得(a – 1)2 – (a + 1)2 = 4,展开可得2a*(-2) = 4,解得a = -1,代入①可得b = -1 ;

综上所述,常数a = -1,b = -1

已知S(x)=a1x+a2x^2+...+anx^n,且a1,a2,...,an组成等差数列,n为正偶数

解:

(1)

因a1,a2,...,an组成等差数列,所以设公差为d,

又因S(1)=n^2,则

a1+a2+...+an=n^2,则由等差数列求和公式Sn=[2na1+n(n-1)d]/2可得

[2na1+n(n-1)d]/2=n^2,化简得

a1+d(n-1)/2=n,即a1=n(1-d/2)+d/2,

因为a1是等差数列的首项,所以和n无关,故1-d/2=0,即d=2

所以a1=1,得an=a1+(n-1)d,带入an=1+(n-1)*2,

得{an}的通项公式为 an=2n-1;

(2)

由(1)可得S(x)=x+3x^2+5x^3+...+(2n-1)x^n,则

S(1/2)=(1/2)+3*(1/2)^2+5*(1/2)^3+...+(2n-1)*(1/2)^n,

(1/2)S(1/2)=(1/2)^2+3*(1/2)^3+5*(1/2)^4+...+(2n-1)*(1/2)^(n+1),则

S(1/2)-(1/2)S(1/2)=(1/2)+2*(1/2)^2+2*(1/2)^3+...+2*(1/2)^n-(2n-1)*(1/2)^(n+1),化简得

(1/2)S(1/2)=-(1/2)+(1-(1/2)^n)/(1-(1/2))-(2n-1)*(1/2)^(n+1),

S(1/2)=-1+4-(1/2)^(n-2)-(2n-1)*(1/2)^n,

S(1/2)=3-(1/2)^(n-2)-(2n-1)*(1/2)^n,

所以S(1/2)<3