x=0是函数f(x)=sinx/|x|的什么间断点?
更新时间:2021-12-28 18:38:52 • 作者:KYLE •阅读 6649
- f(x)=sinx在x=0时,是什么间断点
- x=0是sinx/x的第一类间断点的原因?
- 函数f(x)=sinx/x在点x=0处间断,下列哪种函数定义使得x=0点变为f(x)的连续点()
- F(x)=x/sinx x=0为什么是可去间断点 它应该无意义是无穷间断点才对啊
f(x)=sinx在x=0时,是什么间断点
展开全部
f(x)=sinx在x=0处连续,不存在间断点
f(x)=sinx,(x≠0)在x=0处为可去间断点
x=0是sinx/x的第一类间断点的原因?
首先我们注意函数间断点的定义:设x0是函数f(x)的间断点,如果单侧极限f(x0-)及f(x0+)都存在则x0称为第一类间断点;如果f(x0-)及f(x0+)中有一个不存在,则x0称为第二个间断点。由于当x趋近于0时函数sinx/x极限等于1,f(0-)=f(0+)=1都存在,所以x=0是函数的第一类间断点。缉籂光饺叱祭癸熄含陇如果我们补充定义f(0)=1那么f(x)在点x=0就连续了。
函数f(x)=sinx/x在点x=0处间断,下列哪种函数定义使得x=0点变为f(x)的连续点()
选A
lim(x->0)sinx/x=1
f(0)=1
函数值=极限值,函数在x=0处连续。
F(x)=x/sinx x=0为什么是可去间断点 它应该无意义是无穷间断点才对啊
极限是1,连续,可去间断点。请去看高数或者数分书。