1. 首页 > 科技

python 怎么画与其他方法进行比较的ROC曲线? roc曲线如何合并在一起

python 怎么画与其他方法进行比较的ROC曲线?roc曲线如何合并在一起

ROC曲线的分析步骤

1、ROC的分析步骤:

①ROC曲线绘制。依据专业知识,对疾病组和参照组测定结果进行分析,确定测定值的上下限、组距以及截断点(cut-off point),按选择的组距间隔列出累积频数分布表,分别计算出所有截断点的敏感性、特异性和假阳性率(1-特异性)。以敏感性为纵坐标代表真阳性率,(1-特异性)为横坐标代表假阳性率,作图绘成ROC曲线。

②ROC曲线评价统计量计算。ROC曲线下的面积值在1.0和0.5之间。在AUC>0.5的情况下,AUC越接近于1,说明诊断效果越好。AUC在 0.5~0.7时有较低准确性,AUC在0.7~0.9时有一定准确性,AUC在0.9以上时有较高准确性。AUC=0.5时,说明诊断方法完全不起作用,无诊断价值。AUC<0.5不符合真实情况,在实际中极少出现。

③两种诊断方法的统计学比较。两种诊断方法的比较时,根据不同的试验设计可采用以下两种方法:①当两种诊断方法分别在不同受试者身上进行时,采用成组比较法。②如果两种诊断方法在同一受试者身上进行时,采用配对比较法。

2、受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve)。得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已。接受者操作特性曲线就是以虚报概率为横轴,击中概率为纵轴所组成的坐标图,和被试在特定刺激条件下由于采用不同的判断标准得出的不同结果画出的曲线。

roc曲线如何画

根据五种先定概率得到的实验结果,就可计算击中概率和虚惊概率。最后,根据不同先定概率下的击中概率和虚惊概率,就可在图上确定各点的位置,把五点联接起来就绘成一条 ROC曲线。

如下图:

扩展资料:

ROC曲线的特性

(1)β值的改变独立于d’的变化,考察β值变化对P(y/SN)和P(y/N)的影响时发现:当β接近0时,击中概率几乎为0,即信号全当成噪音接受;当β接近无穷大时,虚惊概率几乎为0,即噪音全当成信号接受;

而当β从接近0向无穷大渐变的过程中,将形成一条完整地ROC曲线,曲线在某一处达到最佳的标准βOPT。

(2)ROC曲线的曲率反应敏感性指标d’:对角线,代表P(y/SN)=P(y/N),即被试者的辨别力d’为0,ROC曲线离这条线愈远,表示被试者辨别力愈强,d’的值当然就愈大。

由上可知,d’的变化使ROC曲线形成一个曲线簇,而β的变化体现·在这一曲线簇中的某一条曲线上不同点的变化。此外,如果将ROC曲线的坐标轴变为Z分数坐标,将看到ROC曲线从曲线形态变为直线形态。这种坐标变换可以用来验证信号检测论一个重要假设,即方差齐性假设。

参考资料来源:百度百科-ROC曲线

如何做两个指标合并后的ROC曲线

:prism主页面中有T,是类似于photoshop中的输入模式,点击T,可以输入文字以及符合。*可以用shift+8输入。T的左边是矩形方块,通过下拉框选择直线形状,类似于word中的输入模式,拉直线画图就可以了。

python Turtle如何绘制任意弧度的曲线?

要画弧线自然需要用到正余弦函数