平行轴定理能应用于非匀质物体吗? 如何判断交个轴平行
大学物理 平行轴定理到底有什么用?请举例说明
用处太大了,如果物体不是绕自己的对称轴转动,就必须用。例如,一个球绕球外一个轴做圆周运动。
平行轴定理解释
平行轴定理定义:平行轴定理反映了刚体绕不同轴的转动惯量之间的关系,它给出了刚体对任意转轴的转动惯量和对与此轴平行且通过质心的转轴的转动惯量之间的关系。
若有任一轴与过质心的轴平行,且该轴与过质心的轴相距为d,刚体对其转动惯量为J',则有:J'=J+md^2
其中J表示相对通过质心的轴的转动惯量。这个定理称为平行轴定理。
举个例子,根据平行轴定理,细棒绕通过其一端而垂直于棒的轴的转动惯量为J=JC+m(l/2)平方=(1/12)ml方+(1/4)ml方=(1/3)ml方
扩展资料:
平行轴定理能够很简易的,从对于一个以质心为原点的坐标系统的惯性张量,转换至另外一个平行的坐标系统。
其量值取决于物体的形状、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。
电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流(检流计)或电量(冲击电流计)。在发动机叶片、飞轮、陀螺以及人造卫星的外形设计上,精确地测定转动惯量,都是十分必要的。
参考资料来源:百度百科-平行轴定理
平行轴定理
若有任一轴与过质心的轴平行,且该轴与过质心的轴相距为d,刚体对其转动惯量为J,则有: J=Jc+md^2 其中Jc表示相对通过质心的轴的转动惯量 这个定理称为平行轴定理
请问转动惯量中的平行轴定理是什么
平行轴定理能够很简易地,从刚体对于一支通过质心的直轴的转动惯量,计算出刚体对平行于质心轴的另外一支直轴的转动惯量。平行轴定理、垂直轴定理、伸展定则,这些工具都可以用来求得许多不同形状的物体的转动惯量。因雅各·史丹纳而命名,史丹纳定理所指的几个理论,其中一个理论就是平行轴定理。平行轴定理能够很简易的,从对于一个以质心为原点的坐标系统的惯性张量