1. 首页 > 科技

∫1/√xcos^2√xdx 1cosxcos2xcos3x

∫1/√xcos^2√xdx1cosxcos2xcos3x

请问∫1/√xcos√xdx怎么解?

=2∫cos√xd√x=2sin√x+C或换元法设t=√x求

不定积分 :∫ xcos^2xdx 求详细过程和答案 拜托大神.

∫ xcos^2xdx

=∫ x(1+cos2x/2)dx

=1/2∫ xdx+1/2∫xcos2xdx

=x²/4+1/4∫xdsin2x

=x²/4+1/4*xsin2x-1/4∫sin2xdx

=x²/4+1/4*xsin2x-1/8∫sin2xd2x

=x²/4+1/4*xsin2x+1/8*cos2x+C

不定积分 :∫ xcos^2xdx

^∫

=∫ x(1+cos2x/2)dx

=1/2∫ xdx+1/2∫xcos2xdx

=x²/4+1/4∫xdsin2x

=x²/4+1/4*xsin2x-1/4∫sin2xdx

=x²/4+1/4*xsin2x-1/8∫sin2xd2x

=x²/4+1/4*xsin2x+1/8*cos2x+C

xcos^2x的不定积分

本题是不定积分基本练习题,具体步骤如下:

∫ⅹcos^2xdx

=∫x(1+cos2x)dx/2

=(1/2)∫xdx+(1/2)∫xcos2xdx

=(1/2)*(1/2)*x^2+(1/4)∫ⅹcos2xd2x

=(1/2)*(1/2)*x^2+(1/4)∫ⅹdsin2x

=(1/4)ⅹ^2+(1/4)ⅹsin2x-(1/4)∫sin2xdx

=(1/4)ⅹ^2+(1/4)ⅹsin2x-(1/8)∫sin2xd2x

=(1/4)ⅹ^2+(1/4)ⅹsin2x+(1/8)cos2x十C。

本题主要用到分部积分法和三角函数的求导公式。