Spss回归分析? spss多元回归分析步骤
SPSS怎么进行回归分析
spss使用多元逐步回归分析的方法过程:
1、在spss里variable view里,输入5个变量名称,可用中文。
2、在data view里分别录入5个变量对应的数据;
3、点击analyze--regession--linear,在弹出框里,把因变量(抑郁得分)选定在dependent里,其他4个变量选到independent里,method里建议选择stepwise,然后直接点ok就可以了;
4、结果里,R值就是回归的决定系数,代表各变量能解析因变量的程度。ANOVA里,sig小于0.05证明回归方程有效。constant对应的B值是截距(常数项),其他变量对应B值就是变量的影响系数。变量对应的beta值就是他们的标准化影响系数,数值最高的就是影响力度最大的因素。最后的excluded variables是排除的变量,就是说在这个框里的因子就是对特定变量几乎没什么影响的。
如何用spss进行回归分析
展开全部
多元线性回归
1.打开数据,依次点击:analyse--regression,打开多元线性回归对话框。
2.将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量。
3.设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法。
4.等级资料,连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。
虚拟变量ABCD四类,以a为参考,那么解释就是b相对于a有无影响,c相对于a有无影响,d相对于a有无影响。
5.选项里面至少选择95%CI。
点击ok。
如何用spss做多因素回归分析
SPSS统计软件可以用来做许多数据分析,回归分析就是其中之一。回归分析就是探索两种及其以上变量之间的关系,运用十分广泛,按照自变量和因变量之间的函数关系类型可以分为线性回归分析和非线性回归分析。回归分析不仅可以分析数据,更可以用来预测一些数据的发展情况,从而应用非常广泛。多因素回归分析步骤如下:
1、打开SPSS软件后点击右上角的【打开文件按钮】打开你需要分析的数据文件
2、接下来就是开始做回归分析建立模型,研究其变化趋势,因为回归分析分为线性回归和非线性回归,分析它们的办法是不同的,所以先要把握它们的变化趋势,可以画散点图,点击【图形】---【旧对话框】---【散点/点状】
3、选择【简单分布】,并点击【定义】,这种散点图是我们常见的,而其他几种都比较复杂,用到这儿就把简单问题复杂化了。
4、在接下来的弹出框中设置x轴和y轴,然后点击确定,其他都不要管,然后得到散点图,可以看出x轴和y轴明显呈线性关系,所以接下来的回归分析就要用线性回归方法,假设图像呈曲线就需要选择曲线拟合的方法。
5、点击【分析】---【回归】---【线性】
6、在弹出的线性回归框中设置自变量和因变量,其他的选项用默认设置即可,其他的选项只是用来更加精确地去优化模型
7、接下来就是结果分析了,一共在输出文档中弹出了四张表其中【系数表】就是所求出来的模型,根据B列写出函数表达式,这道题就是y=1.594x+26.659,sig均小于0.05表示自变量对因变量有显著影响。
8、【Anova表】表示分析结果,主要看的是F和Sig值,F值对应的Sig值小于0.05就可以认为回归方程是有用的,
9、【模型汇总表】中R表示拟合优度,值越接近1表示模型越好。至此回归分析就完成了图中的这个模型就是比合理的。
如何使用SPSS进行逐步回归分析?
逐步回归分析
在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x之间可能不完全相互独立的,可能有种种互作关系。在这种情况下可用逐步回归分析,进行x因子的筛选,这样建立的多元回归模型预测效果会更较好。
逐步回归分析,首先要建立因变量y与自变量x之间的总回归方程,再对总的方程及每—个自变量进行假设检验。当总的方程不显著时,表明该多元回归方程线性关系不成立;而当某—个自变量对y影响不显著时,应该把它剔除,重新建立不包含该因子的多元回归方程。筛选出有显著影响的因子作为自变量,并建立“最优”回归方程。
回归方程包含的自变量越多,回归平方和越大,剩余的平方和越小,剩余均方也随之较小,预测值的误差也愈小,模拟的效果愈好。但是方程中的变量过多,预报工作量就会越大,其中有些相关性不显著的预报因子会影响预测的效果。因此在多元回归模型中,选择适宜的变量数目尤为重要。
逐步回归在病虫预报中的应用实例:
以陕西省长武地区1984~1995年的烟蚜传毒病情资料、相关虫情和气象资料为例(数据见DATA6.xls),建立蚜传病毒病情指数的逐步回归模型,说明逐步回归分析的具体步骤。影响蚜传病毒病情指数的虫情因子和气象因子一共有21个,通过逐步回归,从中选出对病情指数影响显著的因子,从而建立相应的模型。对1984~1995年的病情指数进行回检,然后对1996~1998年的病情进行预报,再检验预报的效果。
变量说明如下:
y:历年病情指数