1. 首页 > 教育

高中数学函数题? 高中数学函数题集锦

高中数学函数题?高中数学函数题集锦

高中数学函数题

f(x)=(sinwx)^2+(√3/2)sin2wx=1/2-(1/2)cos2wx+(√3/)sin2wx=1/2+sin(2wx-π/6).

1..

2π/2w=π..w=1

2..0≤x≤2π/3

-π/6≤2x-π/6≤7π/6

-1/2≤sin(2x-π/6)≤1

0≤1/2+sin(2x-π/6)≤3/2

f(x)..[0,3/2]

高一数学函数测试题大题,有答案 30道左右?

已知实数 ,求函数 的零点。16.(本题满分12分)已知函数 .(Ⅰ)求 的定义域;(Ⅱ)证实:函数 在定义域内单调递增.17.(本题满分14分)某商品每件成本9元,售价为30元,每星期卖出432件. 假如降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值 (单位:元, )的平方成正比.已知商品单价降低2元时,一星期多卖出24件.(Ⅰ)将一个星期的商品销售利润表示成 的函数;(Ⅱ)如何定价才能使一个星期的商品销售利润最大?18.(本题满分14分)若函数y= x3- ax2 (a-1)x 1在区间(1,4)内为减函数,在区间(6, ∞)内为增函数,试求实数a的取值范围.19.(本题满分14分)两个二次函数 与 的图象有唯一的公共点 ,(Ⅰ)求 的值;(Ⅱ)设 ,若 在 上是单调函数,求 的范围,并指出是单调递增函数,还是单调递减函数。20.(本题满分14分)设函数y= 是定义在R上的函数,并且满足下面三个条件: ①对任意正数x、y,都有; ②当x>1时, <0; ③ .(Ⅰ)求 的值;(Ⅱ)证实 上是减函数;(Ⅲ)假如不等式 成立,求x的取值范围。 15.(本题满分12分)解: , 可能等于1或 或 。 ………………………………2分当 时,集合为 ,不符合集合元素的互异性。 同理可得 。,得 (舍去)或 。 ………………………………9分,解方程 得函数 的零点为 和 。 ………………12分16.解:(1)由 ,解得 ∴ 的定义域为 ……………………4分(2)证实:设 ,∴ 则 因此: , 即: ,则 在(- ,0)上为增函数。…………………14分17.(本题满分14分)解:(1)设商品降价 元,则每个星期多卖的商品数为 ,若记商品在一个星期的获利为 ,则依题意有, ……………………4 分又由已知条件, ,于是有 , ………………………6 分所以 . ……………………7 分(2)根据(1),我们有 .…………9分当 变化时, 与 的变化如下表:21200极小极大</TABLE>…………………11 分故 时, 达到极大值.因为 , ,所以定价为 元能使一个星期的商品销售利润最大. ……………………14 分18、(剖析:用导数研究函数单调性,考查综合运用数学知识解决问题的能力).解: (x)=x2-ax a-1=0得x=1或x=a-1,当a-1≤1,即a≤2时,函数f(x)在(1, ∞)上为增函数,不合题意.当a-1>1,即a>2时,函数f(x)在(-∞,1)上为增函数,在(1,a-1)上为减函数,在(a-1, ∞)上为增函数.依题意,当x∈(1,4)时, (x)<0,当x∈(6, ∞)时, (x)>0,∴4≤a-1≤6.∴5≤a≤7.∴a的取值范围为[5,7].评述:若本题是“函数f(x)在(1,4)上为减函数,在(4, ∞)上为增函数.”我们便知x=4两侧使函数 (x)变号,因而需要讨论、探索,属于探索性问题.19.(本小题满分14分)解:(1)由已知得 化简得 …………………………2分且 即 有唯一解 …………………………3分所以 即 …………………………5分消去 得 ,解得 …………………………7分(2) …………………………9分…………………………10分若 在 上为单调函数,则 在 上恒有 或 成立。因为 的图象是开口向下的抛物线,所以 时 在 上为减函数, …………………………12分所以 ,解得 即 时, 在 上为减函数。 …………………………14分20.解:(Ⅰ)令x=y=1易得 . 而 ,且 (Ⅱ) ∴ ∴ 在R 上为减函数。(Ⅲ)由条件(1)及(Ⅰ)的结果得: 由可(Ⅱ)得: 解得x的范围是 )

高中函数题

1. 二次函数f(x)满足 f(x+1)-f(x)=2x 且 f(0)=1 求f(X)

解析:∵二次函数f(x)满足 f(x+1)-f(x)=2x 且 f(0)=1

f(x+1)=f(x)+2x

f(1)=f(0)=1

f(2)=f(1)+2?1=3

f(3)=f(2)+2?2=7

f(4)=f(3)+2?3=13

……

f(n)=1+2(1+2+3+…+n-1)=n(n-1)+1

∴F(x)=x^2-x+1

2.讨论f(x)=ax/(x2-1) 在(-1,1)的单调性

解析:∵f(x)=ax/(x2-1),其定义域为x≠-1,x≠1

f’(x)=-a(1+x^2)/(x2-1)^2

∵(1+x^2)/(x2-1)^2>0,∴f’(x)的符号取决于a

∴当a>0时,函数f(x)在(-1,1)的单调减;当a<0时,函数f(x)在(-1,1)的单调增;

3. 若函数f(x)满足f(x)-2f(-x)=1/x+x (x≠0)

(1)解析:∵函数f(x)满足f(x)-2f(-x)=1/x+x (x≠0)(a)

∴f(-x)-2f(x)=-1/x-x (b)

(a)+2*(b)得-3f(x)=-x-1/x==>f(x)=(x^2+1)/(3x)

(2)解析:f’(x)=(3x^2-3)/(3x)^2

f’(3)>0, f’(5)>0,∴f(x)在区间[3,5]上单调增

∴f(x)在x∈[3,5]的最大值为f(5)=26/15,最小值为f(3)=10/9

高中数学一些函数(对数函数,指数函数的)的经典例题

1.函数y=f(x)是定义域为[-6,6]的奇函数。又知y=f(x)在[0,3]上是一次函数,在[3,6]上是二次函数,且当x属于[3,6]时,f(x)小于等于f(5)=3,f(6)=2,试求y=f(x)的解析式。

答:函数y=f(x)是定义域为[-6,6]的奇函数。又知y=f(x)在[0,3]上是一次函数,在[3,6]上是二次函数,且当x属于[3,6]时,f(x)小于等于f(5)=3,f(6)=2,

可设 f(x)=a(x-5)^2+3 a<0

f(6)=2

则 a+3=2解得 a=-1

故 f(x)=-(x-5)^2+3=-x^2+10x-22 3<=x<=6

f(3)=-1 f(0)=0

则 0<=x<=3 f(x)=-x/3

函数y=f(x)是定义域为[-6,6]的奇函数

故 -3-6<=x<=-3 f(x)=x^2+10x+22

综合 -6<=x<=-3 f(x)=x^2+10x+22

-3 0<=x<=3 f(x)=-x/3

3<=x<=6 f(x)=-x^2+10x-22

试求y=f(x)的解析式。

2.已知函数f(x)=(x-a)/(x-2),若a属于R,且方程f(x)=-x恰有一根落在区间(-2,-1)内,求a的取值范围.

答:f(x)=-x

(x-a)/(x-2)=-x

x^2-x-a=0

令g(x)=x^2-x-a

1°g(x)与x轴有一个交点

△=1+4a=0=>a=-1/4

x=1/2不属于(-2,-1)

a不等于-1/4

2°g(x)与x轴有两个交点

△>0且g(-1)*g(-2)<0=>a属于(2,6)

所以a属于(2,6)

3.对于函数f(x),若存在X0属于R,使f(X0)=X0成立,则称点(X0,X0)为函数的不动点,若对于任意实数b,函数f(x)=ax*x+bx-b总有两个相异的不动点,求实数a的取值范围.

答:ax^2+bx-b=x

ax^2+(b-1)x-b=0

△=(b-1)^2+4ab=b^2+(4a-2)b+1>0

(4a-2)^2-4<o且a不等于0

所以,a属于(0,1)

3.设f(x)=log1/2(1-ax)/(x-1)为奇函数,a为常数.(1)求a的值;(2)证明f(x)在(1,+∞)内单调递增;(3)若对于[3,4]上的每一个x的值,不等式f(x)>(1/2)x+m恒成立,求实数m的取值范围.(不等式应为二分之一的x次方,不会打)

答:f(x)=-f(-x)

log1/2[(1-ax)/(x-1)]=-log1/2[(1+ax)/(-x-1)]

a=±1

因为真数大于零

所以,a=-1