1. 首页 > 教育

已知sin(α+π/3)+sinα-4√3/5,那么cos(α+2π/3)=____?(已知sin(α+π/3)+sinα=-4√3/5

已知sin(α+π/3)+sinα-4√3/5,那么cos(α+2π/3)=____?(已知sin(α+π/3)+sinα=-4√3/5,-π/2<α<0,求cosα)

已知sin(α+π/3)+sinα=-4√3/5,-π/2<α<0,求cosα

由已知,sinα*1/2+cosα*√3/2+sinα=-4√3/5,

所以 sinα*√3/2+cosα*1/2=-4/5,(合并后,两边约去根号3)

即 sin(α+π/6)=-4/5,

由于 -π/2&lt;α&lt;0,所以 -π/3&lt;α+π/6&lt;0(因为正弦为负,所以角小于0,不能写小于π/6)

因此,cos(α+π/6)=3/5,

所以 cosα=cos[(α+π/6)-π/6]

=cos(α+π/6)cos(π/6)+sin(α+π/6)sin(π/6)

=3/5*√3/2+(-4/5)*1/2

=(3√3-4)/10 。

sin(α+π/3)+sinα=-4根号3/5,则(α+2π/3)等于

解: sin(α+π/3)+sinα=2sin{[(α+π/3)+α]/2]}*cos{[(α+π/3)-α]/2}.

=2sin(α+π/6)cos(π/6).

=2sin(α+π/6)*(√3/2).

=√3sin(α+π/6).

∵sin(α+π/3)+sinα=-4√3/5.

∴√3sin(α+π/6)=-4√3/5

sin(α+π/6)=-4/5.

∵π/6=π/2-π/3.

∴sin(α+π/6)=sin(α+π/2-π/3).

sin(α+π/2-π/3)=cos(α-π/3).

即,cos(α-π/3)=-4/5..

∵α+2π/3=α+π-π/3.

cos(α+2π/3)=cos(π+α-π/3).

=-cos(α-π/3).

=-(-4/5).

=4/5).

∴α+2π/3=arccos(4/5)

1.已知sin﹙α+π/3﹚+sinα=-4√3/5,则cosα=

2.在平面直角坐标系中,O﹙0,0﹚,P﹙6,8﹚,将向量OP按逆时针旋转3π/4后,得向量OQ,则Q的坐标是?

(要详细步骤)

1.解:由已知sin(α + π/3)

+ sinα = -4√3/5,所以(1/2)sinα + (√3/2)cosα + sinα = -4√3/5,所以(3/2)sinα + (√3/2)cosα = -4√3/5,即√3sinα + cosα = -8/5①,由三角恒等式可得sin2α + cos2α = 1②,联立可得[(-8/5 – cosα)/ √3]2 + cos2α

= 1,所以(-8/5 – cosα)2/3

+ cos2α = 1,所以64/25 + 16cosα/5 + cos2α + 3cos2α

= 3,整理可得4cos2α

+ 16cosα/5 – 11/25 = 0,即100cos2α + 80cosα – 11 = 0,根的判别式Δ= 6400 – 4*100*(-11)

= 6400 + 4400 = 10800,所以cosα = (-80 ±

√10800)/200 = (-4 ± 3√3)/10 ;

综上所述,cosα = (-4 ± 3√3)/10

2.解:由题意,向量OP = (6,8) = 10(3/5,4/5),可以设点P的坐标为(10cosθ,10sinθ),其中cosθ = 3/5,sinθ = 4/5,将向量OP按逆时针旋转3π/4后,得到向量OQ,那么点P旋转到点Q(10cos(θ + 3π/4),10sin(θ + 3π/4)),计算可得cos(θ + 3π/4) = cosθcos(3π/4) – sinθsin(3π/4) = (3/5)*(-√2/2) – (4/5)(√2/2)

= -7√2/10,而且sin(θ + 3π/4)

= sinθcos(3π/4) + cosθsin(3π/4) = (4/5)*(-√2/2) + (3/5)(√2/2)

= -√2/10,代入可得点Q的坐标为(-7√2-√2)

已知sin( α+ π/3 )+ sinα =- 4√3 / 5,(- π/2 )<α<0,求cosα的值

- π/2<α<0

sin( α+ π/3 )+ sinα =- 4√3 / 5

sinαcosπ/3+cosαsinπ/3+ sinα =- 4√3 / 5

1/2sinα+√3/2*cosα+ sinα =- 4√3 / 5

3/2sinα+√3/2*cosα=- 4√3 / 5

√3/2sinα+1/2*cosα=- 4 / 5

√3/2sinα+1/2*cosα=- 4 / 5

sinπ/3sinα+cosπ/3cosα=- 4 / 5

cos(α-π/3)=- 4 / 5

- π/2<α<0

- 5π/6<α-π/3<-π/3

所以- 5π/6<α-π/3<-π/2

sin(α-π/3)=- 3/ 5

cosα

=cos[(α-π/3)+π/3]

=cos(α-π/3)cosπ/3-sin(α-π/3)sinπ/3

=cos(α-π/3)cosπ/3-sin(α-π/3)sinπ/3

=-4/5*1/2-(-3/5)*√3/2

=-2/5+3√3/10