回归直线法r系数公式 回归直线法公式
线性回归计算中的r怎么计算
1、r=∑(Xi-X)(Yi-Y)/根号[∑(Xi-X)²×∑(Yi-Y)²]
上式中”∑”表示从i=1到i=n求和;X,Y分别表示Xi,Yi的平均数。
2、简单线性回归用于计算两个连续型变量(如X,Y)之间的线性关系,
具体地说就是计算下面公式中的α和βα和β。
Y=α+βX+εY=α+βX+ε
其中εε称为残差,服从从N(0,σ2)N(0,σ2)的正态分布,自由度为(n-1) - (2-1) = n-2 为了找到这条直线的位置,我们使用最小二乘法(least squares approach)。
最小二乘法确保所有点处的残差的平方和最小时计算α和βα和β,即下面示意图中∑4i=1ε2i=ε21+ε22+ε23+ε24∑i=14εi2=ε12+ε22+ε32+ε42有最小值。
扩展资料:
线性回归有很多实际用途。分为以下两大类:
1、如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
2、趋势线
一条趋势线代表着时间序列数据的长期走势。它告诉我们一组特定数据(如GDP、石油价格和股票价格)是否在一段时期内增长或下降。虽然我们可以用肉眼观察数据点在坐标系的位置大体画出趋势线,更恰当的方法是利用线性回归计算出趋势线的位置和斜率。
参考资料来源:百度百科—线性回归
线性回归方程中的相关系数r,如何求?
r=∑(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(Xi-X平均数)^2*∑(Yi-Y平均数)^2]
回归直线中R的方的公式
以一简单数据组来说明什么是线性回归。假设有一组数据型态为 y=y(x),其中 x={0, 1, 2, 3, 4, 5}, y={0, 20, 60, 68, 77, 110} 如果我们要以一个最简单的方程式来近似这组数据,则非一阶的线性方程式莫属。先将这组数据绘图如下 图中的斜线是我们随意假设一阶线性方程式 y=20x,用以代表这些数据的一个方程式。以下将上述绘图的 MATLAB 指令列出,并计算这个线性方程式的 y 值与原数据 y 值间误差平方的总合。 >> x=[0 1 2 3 4 5]; >> y=[0 20 60 68 77 110]; >> y1=20*x; % 一阶线性方程式的 y1 值 >> sum_sq = sum(y-y1).^2); % 误差平方总合为 573 >> axis([-1,6,-20,120]) >> plot(x,y1,x,y,'o'), title('Linear estimate'), grid 如此任意的假设一个线性方程式并无根据,如果换成其它人来设定就可能采用不同的线性方程式;所以我们 须要有比较精确方式决定理想的线性方程式。我们可以要求误差平方的总合为最小,做为决定理想的线性方 程式的准则,这样的方法就称为最小平方误差(least squares error)或是线性回归。MATLAB的polyfit函数提供了 从一阶到高阶多项式的回归法,其语法为polyfit(x,y,n),其中x,y为输入数据组n为多项式的阶数,n=1就是一阶 的线性回归法。polyfit函数所建立的多项式可以写成 从polyfit函数得到的输出值就是上述的各项系数,以一阶线性回归为例n=1,所以只有 二个输出值。如果指令为coef=polyfit(x,y,n),则coef(1)= , coef(2)=,...,coef(n+1)= 。注意上式对n 阶的多 项式会有 n+1 项的系数。我们来看以下的线性回归的示范: >> x=[0 1 2 3 4 5]; >> y=[0 20 60 68 77 110]; >> coef=polyfit(x,y,1); % coef 代表线性回归的二个输出值 >> a0=coef(1); a1=coef(2); >> ybest=a1*x+a0; % 由线性回归产生的一阶方程式 >> sum_sq=sum(y-ybest).^2); % 误差平方总合为 356.82 >> axis([-1,6,-20,120]) >> plot(x,ybest,x,y,'o'), title('Linear regression estimate'), grid
线性回归系数r怎么求
貌似得差不多了。应该是
(xi-x平均) (yi-y平均) 的 求和
除以根号下 ( (xi-x平均)的平方求和 乘以(yi-y平均)的平方求和)
注意r是不带单位的。如果没有那个“的平方”量纲就不对了。